MARIA RÓŻKOWSKA*

CONTRIBUTION TO THE FRASNIAN TETRACORALS FROM POLAND

(plates 1-10)

Abstract. — Thirty nine Frasnian tetracoral species assigned to 25 genera and 12 families are described. The following 7 genera are new: Smithicyathus (subfamily Phillipsastraeinae), Trigonella, Debnikiella (subfamily Marisastrinae), Piceaphyllum (family Charactophyllidae), Fedorowskicyathus (family incertae sedis), Kowalaephyllum (family Chonophyllidae), Rachaniephyllum (family? Cystiphyllidae); 22 new species are introduced. The described fauna comes from the Holy Cross Mts. (Góry Świętokrzyskie), Silesia-Cracow Upland, Sudetes, Pomerania and Lublin region. The stratigraphic.and geographic distribution of all so far described Polish Frasnian tetracorals is summarized. It has been noted that the long lasting parallel monacanths posses no major value for classification, but the rhipidacanthine fans are taxonomically important. The secondary alteration of septa that appears in the Upper Frasnian corals indicates on their homeomorphy with some Silurian genera.

Streszczenie. — Zbadano tetrakorale frańskie z odsłonięć w Górach Świętokrzyskich i w Sudetach, z wierceń na Pomorzu, na Wyżynie Śląsko-Krakowskiej i w regionie lubelskim. Opisano 39 gatunków tetrakorali, w tym 17 gatunków znanych z literatury oraz 22 gatunki nowe. Należą one do 12 rodzin i 25 rodzajów, w tym 7 rodzajów nowych. Nowe rodzaje to: Smithicyathus, Trigonella, Debnikiella, Piceaphyllum, Fedorowskicyathus, Kowalaephyllum i Rachaniephyllum. Występują one przeważnie w górnym franie, w poziomie Palmatolepis gigas. Omówiono znaczenie tetrakorali dla biostratygrafii franu w oparciu o ich współwystępowanie z konodontami. Skorelowanie tetrakorali z konodontami umożliwia bardziej precyzyjne stosowanie tetrakorali w stratygrafii utworów biogenicznych franu, w których konodontów często brak.

Ważnymi cechami rodzajowymi są, poza cechami morfologicznymi, mikrostruktura i struktura septów. Niektóre typy mikrostruktury są długotrwałe i występują w różnych rodzinach tetrakorali (np. fibro-normalna, disfyloidalna). W rodzinie Phillipsastraeidae trabekule-monakanty są ustawione wychlarzowato, a w 3 podrodzinach: Phillipsastraeinae, Phacellophyllinae i Marisastrinae, monakanty są rozwidlone i noszą nazwę ripidakantów. W niektórych rodzajach znaczenie diagnostyczne ma struktura peryferycznych końców septów. Typ "naotic", spotykany u *Chonophyllum, Cratero-phyllum* i *Kowalaephyllum*, cechuje się dywergentnie ustawionymi pręcikami trabekularnymi i blaszkowatymi dissepimentami. U *Tabulophyllum* istnieją tylko pręciki. W strukturze cystifyloidalnej septa są zredukowane do krótkich kolców septalnych, umieszczonych na wewnętrznej powierzchni ściany zewnętrznej i na pęcherzach. Tak zmodyfikowane peryferyczne końce septów są częste u tetrakorali sylurskich. W górnym franie znamionują one raczej szczytową fazę rozwoju niektórych linii lub są homeomorfami.

CONTENTS

Pi	Igo
ntroduction	4
Acknowledgements	5
Abbreviations used	6
Description of exposures and boreholes	6
Frasnian tetracorals as age indicators	11
Taxonomic value of septal fine structure	15

* Prof. Dr Maria Różkowska died on June 20, 1979, while this paper was in press.

Systematic description											
Family Petraiidae de KONINCK, 1872		 	 		 						16
Genus Pseudopetraia SOSHKINA, 1951; non SCHINDEWOLF,	1924		 		 						16
Family Streptelasmatidae NICHOLSON, 1889		 	 		 						16
Genus Breviphrentis STUMM, 1949		 	 		 						16
Family Arachnophyllidae Dybowski, 1873		 	 		 						17
Genus (?) Craterophyllum FOERSTE, 1909		 	 	. .	 						17
Family Zaphrentidae M. EDWARDS and HAIME, 1850		 	 		 						18
Genus Heliophyllum HALL in DANA, 1846		 	 		 						17
Family Phillipsastraeidae ROEMER, 1883		 	 		 						18
Subfamily Phillipsastraeinae ROEMER, 1883		 	 		 						18
Genus Smithicyathus gen. n		 	 		 						18
Genus Phillipsastrea d'ORBIGNY, 1849		 	 		 						19
Subfamily Phacellophyllinae WEDEKIND, 1921		 	 		 						20
Genus Pterorrhiza Ehrenberg, 1834		 	 		 						20
Genus Peneckiella Soshkina, 1939.		 	 		 						21
Subfamily Marisastrinae Różkowska, 1965		 	 		 						22
Genus Haplothecia FRECH. 1885		 	 		 						22
Genus Ceratophyllum Gürich. 1896		 	 		 						22
Genus Trigonella gen. n.		 	 		 			·	• •		24
Genus Debnikiella gen. n.		 	 		 	•		•			25
Family Disphyllidae HILL 1939		 	 		 						26
Genus Aristophyllum BULVANKER, SPASSKY, KRAVTSOV, 19	975	 	 		 			•			26
Family Mictophyllidae HILL, 1940		 	 		 						28
Genus Mictophyllum LANG and SMITH. 1939		 	 		 						28
Family Charactophyllidae PEDDER, 1972		 	 		 			•		ż	29
Genus Charactophyllum Simpson, 1900		 	 		 					ż	29
Genus Alaionhvllum GORIANOV. 1961		 	 								30
Genus Temnophyllum WALTHER, 1928.		 	 		 						31
Genus Piceaphyllum gen. n		 	 								34
Family uncertain		 	 								36
Genus Fedorowskicvathus gen. n.		 	 								36
Family Chonophyllidae HOLMES, 1887		 	 								37
Genus Chonophyllum M. EDWARDS and Haime, 1850		 	 		 						37
Genus Iowaphyllum STUMM, 1949		 	 								38
Genus Kowalaenhvllum gen. n.		 	 								39
Genus Tabulophyllum FENTON and FENTON, 1924		 	 								42
Family Ptenophyllidae WEDEKIND, 1923		 	 								44
Genus Acanthophyllum Dybowski, 1873		 	 								44
Genus Grypophyllum WEDEKIND, 1922		 	 								45
(?) Family Cystiphyllidae M. EDWARDS and Haime. 1850		 	 								45
Genus Rachaniephyllum gen. n.		 	 								45
References		 	 		 •••						46
Explanation of the plates		 	 								50
· · · · · · · · · · · · · · · · · · ·	- /		 				-	-			

INTRODUCTION

The attempt has been made here to present the current knowledge about the Frasnian tetracorals in Poland. The systematic part of the paper contains descriptions of all the not described so far Frasnian tetracoral species, found in Poland. In table 1, both the earlier and the newly described species are tabulated in respect of their stratigraphic and geographic distribution in Poland. In this table an attempt has also been made to correlate stratigraphic ranges and distribution of tetracoral species with the conodont zones. The general conodont zonation of the Frasnian deposits in the Holy Cross Mts. was accepted after SZULCZEWSKI (1971), that of Bolechowice locality after RACKI (1976, unpublished M. Sc. Thesis, Warsaw University), and that of the borehole Karniowice after CHOROWSKA (1975).

The lithological descriptions of the coral bearing outcrops and cores have been much simplified. In each case a short discussion has been introduced in order to express the comparison of the given tetracoral assemblage with the conodont zones and with the recently established Belgian biostratigraphic horizons. For more complete lithological data the reader is referred to GUNIA (1962, 1966, 1968), SZULCZEWSKI (1971), RÓŻKOWSKA and FEDOROWSKI (1972), ŚLÓSARZ and ŻAKOWA (1975), MIŁACZEWSKI (1975) and PAJCHLOWA (1975).

The material studied was collected during the years 1946-1976. The first part was assembled by the present author with the financial support of the Museum of Earth and with the geological advice of J. CZARNOCKI. Later on financial support was received from the Institute of Paleobiology (formerly Paleozoology) of the Polish Academy of Sciences. L. CIMASZEWSKI and L. SZOSTEK sent core material from Pomerania and Silesia-Cracow Upland, respectively. In 1975 the Geological Institute (Warsaw) supplied the core material from the Lublin region, segregated by Dr. J. FEDOROWSKI, Dr M. SZULCZEWSKI sent tetracorals from the Kowala railroad cut, Czarnów and Górno, and Prof. T. GUNIA collected corals from the Sudetes. In 1976 T. WRZOŁEK collected corals from Kowala and Bolechowice, which were offered to the present author by the Department of Geology, Warsaw University.

The earliest references to the Frasnian tetracorals in Poland are those of DYBOWSKI (1873) from the Sudetes; GÜRICH (1896) described phillipsastraeid, disphyllid and other genera from the Holy Cross. Mts. and SOBOLEW (1909) cited Frasnian species from Kowala and Bolechowice. New studies have not been made since Różkowska's papers (1953, 1956, 1960) describing Phillipsastraeidae from the Polish Frasnian and discussing some general problems concerning blastogeny and individual variation in several genera. GUNIA (1962, 1966, 1968) described some Frasnian species from the Sudetes, and Różkowska and FEDOROWSKI (1972) described species of *Disphyllum* DE FROMENTEL.

ACKNOWLEDGEMENTS

The author expresses her warmest thanks to Dr J. FEDOROWSKI (Department of Geology, University od Poznań) for his kind editorial help. Thanks are due to Dr. L. CIMASZEWSKI and L. SZOSTEK M. Sc. and the Management of the Geological Institute in Warsaw for core material, to Dr M. SZULCZEWSKI (Department of Geology, University of Warsaw) for critical review of the conodont zonation, to Professor T. GUNIA (Department of Geology, University of Wrocław) for offering thin sections of tetracorals for study, to Dr L. MIŁACZEWSKI (Geological Institute, Warsaw) for his help in description of the Lublin area boreholes; to T. WRZOŁEK M. Sc. (Department of Geology of the Silesian University) for offering some tatracorals and to Dr. A. Różkowski from the same University for his useful advice during the author's field work in the Silesia-Cracow Upland.

Gratitude is conveyed to Dr. W. A. OLIVER, Jr. (U. S. Geological Survey, Washington) for discussion during his stay in Poznań in 1976 and for sending photographs of holotypes of *Chonophyllum* and *Tabellaephyllum*; to Dr. J. E. SORAUF (Harpar College Binghampton) for photographs of the *Charactophyllum nanum* (HALL and WHITFIELD) from Iowa; and to Dr. V. B. GORIANOV (University of Leningrad) for comments about *Alaiophyllum*.

The present author also wishes to express her thanks to A. Pietura for taking photographs and to E. SZEWCZYK for preparing thin sections and peels.

MARIA RÓŻKOWSKA

ABBREVIATIONS USED

UAM Department of Geology, University of Poznań.

- U. Wr. Department of Geology, University of Wrocław.
- IG Geological Institute in Warsaw.

Septal index, where "n" designates the number of major septa, and "d" the corallite diameter.
Width ratio of the dissepimentarium "d" and the tabularium "t".
Determines the number of tabulae on the stretch of 5 mm.
Corallite length.
Corallite diameter.
Tabularium diameter.
Determines the length ratio of major septa (sI) and minor septa (sII).

DESCRIPTION OF EXPOSURES AND BOREHOLES

Holy Cross Mountains (Góry Świętokrzyskie)

The Frasnian tetracoral faunas have been discovered in numerous places in the western part of the Holy Cross Mts. and in only a few isolated areas in its eastern part. Coral assemblages of particular outcrops are listed in table 1.

Zagórze. — In a series of small quarries, situated south of Kielce-Mójcza road and east of Wietrznia quarry, dolomites and fine grained coral bearing limestones with numerous *Mari*sastrum sedgwicki (EDW.-H.) and *Disphyllum caespitosum* (GOLDFUSS) are exposed. The tetracoral assemblage is closely comparable with the niveau F2a-h in Belgium, i. e. the *Polygnathus* asymmetricus Zone.

Wietrznia hill. — The boundary between Upper Givetian and Lower Frasnian is not established, hidden within biohermal limestones without conodonts. The lowermost points (1.2.4.8) of Różkowska (1953) are of a reefoid type with large stromatoporoids, large Marisastrum sedgwicki (EDW.-H.), abundant other tetracorals and Receptaculites. Higher up in thick crinoidal limestones (points 11.13.22) of Różkowska (l. c.) SZULCZEWSKI (1971) found Ancyrognathus triangularis. In the Middle (?) Frasnian, solitary and branching tetracorals prevail. Points 15.19.21 of Różkowska (l. c.), nowadays inaccessible, yielded a rich Upper Frasnian phillipsastraeid fauna, similar to that characteristic of the Belgium F2i-j zone. Besides abundant phillipsastraeids there are also many other tertacorals comprising one of the richest assemblages of Frasnian tetracorals in Poland. The presence of Frechastraea pentagona (GOLDFUSS) and Iowaphyllum STUMM indicates the third niveau of Phillipsastrea (COEN et al., 1976).

Kadzielnia hill. — The oldest Frasnian limestones are characterized by Thamnophyllum kozlowskii Różkowska, but the contact with the Givetian deposits is unknown. In the middle of the profile, around the "Geologists' Rock", a massive biohermal limestone containing large stromatoporoids, branching Tabulata and solitary tetracorals, mainly Temnophyllum, appears (see PAJCHLOWA and STASIŃSKA 1965). All the so far discussed deposits (points 1 to 21 of Róż-KOWSKA, *l. c.*) do not contain conodonts. However, a rich coral assemblage, very similar to that of Belgian F2a-h niveau, makes it possible to consider them as being equivalents of Polygnathus asymmetricus Zone. The Upper Frasnian age of the upper limestone on the Kadzielnia hill is determined by the presence of Ancyrognathus triangularis and Palmatolepis gigas (SZULCZEWSKI, 1971: 66) and by Phillipsastrea ananas (GOLDFUSS) found by RóżKOWSKA (*l. c.*) in her point 22.

Psie Górki. — According to SZULCZEWSKI (1971: 67) the whole profile of the thick-bedded limestones is approximately 30 m thick and includes Upper *Polygnathus asymmetricus* (to I β) and Lower *Palmatolepsis gigas* (to I γ) Zones.

Karczówka hill. — Although conodonts have not been found there, the lower part of the profile, consisting of a biohermal limestone crowded with Stromatoporoidea, Tabulata, and calcisphaeres, appertains perhaps to the Polygnathus asymmetricus Zone. In its upper part,

near the convent, the present author found an Upper Frasnian phillipsastraeid fauna, which corresponds with Belgian zone F2i-j (COEN-AUBERT 1972: 76), or with the Ancyrognathus triangularis subzone of the Palmatolepis gigas Zone.

Czarnów. — This is a small hill near the Śluchowice quarry. Lithology and conodont fauna were studied by SZULCZEWSKI (1971:60) who established Lower or Middle *Polygnathus asymmetricus* Zone as the age of these deposits. Różkowska and FEDOROWSKI (1972) described Disphyllum caespitosum (GOLDFUSS) from there.

Fig. 1

A sketch-map of Frasnian outcrops and location of boreholes: Sudetes: I -Świebodzice Depression (outcrops: Mokrzeszów, Chwaliszów, Witoszów, Pełcznica, Lubiechów); Pomerania: 2 -Kościernica, 3 -Polanów, 4 -Chojnice (Żerniki); Silesia-Cracow Upland: 5 -Olkusz region (boreholes in Czubrowice, Chechło, Klucze, Karniowice); 6 -Dębnik outcrop; Holy Cross Mts: 7 -Zagórze, Wietrznia, Kadzielnia, Psie Górki, Karczówka, Czarnów, Kowala I, Kowala II, Bolechowice (Jaźwica); 8 -Górno, Łagów, Sobiekurów; Lublin region: 9 -Bąkowa, 10 -Kock, 11 -Niesiołowice, 12 -Tyszowce, 13 -Rachanie, 14 -Tomaszów Lubelski, 15 -Korczmin.

Kowala. — In the vicinity of Kowala village, two Frasnian coral bearing outcrops are exposed. They are called here as follows: Kowala I, the railroad-cut along the Kielce-Busko railway, and Kowala II, the road-cut leading to the quarry Wola Murowana.

Kowala I (railroad cut). SZULCZEWSKI (1971: 74) described in detail the lithology of Frasnian deposits of this outcrop and divided them into series A-H, characterized by a conodont fauna. As the corals are abundant there, and come from precisely established lithological sets, the following short list is given in addition to the table 1.

- Unit A2 Thamnophyllum kozlowskii Różkowska, Temnophyllum turbinatum Hill,
- Unit A3 Thamnophyllum kozlowskii,
- Unit A5 Thamnophyllum kozlowskii, Disphyllum kweihsiense YOH,

Temnophyllum isetense (Soshkina), T. turbinatum Hill, Thamnophyllum monozonatum Soshkina, Piceaphyllum breviseptatum sp. n.

MARIA RÓŻKOWSKA

- Unit B Thamnophyllum kozlowskii, Pterorrhiza berdensis (SOSHKINA), Disphyllum kweihsiense YOH, Temnophyllum isetense SOSHKINA
- Unit C9 Thamnophyllum kozlowskii, Disphyllum wirbelauense bonae Rózkowska, Aristophyllum angustum (GÜRICH), Temnophyllum isetense SOSHKINA, Piceaphyllum breviseptatum sp. n.

Unit C10 Thamnophyllum kozlowskii.

All these units correspond with Lower Polygnathus asymmetricus Zone.

- Unit D, E8 Pterorrhiza berdensis (SOSHKINA), Temnophyllum isetense SOSHKINA, Middle and Lower Polygnathus asymmetricus Zone (to Iα).
- Unit F.G.H. Thamnophyllum kozlowskii, T. monozonatum. Upper Polygnathus asymmetricus Zone (to Iβ) to Lower Palmatolepis triangularis Zone (to Iδ).

Kowala II (road cut). In contrast to more limy deposits of Kowala I the interbedded shales and platy limestones with insertions of cherts occur in Kowala II. The rich coral fauna, sponges, crinoids and brachiopods are partially silicified. No conodonts have been described from these oustcrops as yet, but presence of *Phillipsastrea* indicates an Upper Frasnian age of these deposite. Some undescribed conodonts characterize Lower *Palmatolepis gigas* Zone ((to I γ) SZUL-CZEWSKI, personal comm.).

Bolechowice Jaźwica quarry. — This profile corresponds stratigraphically with that of Kowala I. Racki (1976, unpublished M. Sc. Thesis) distinguished there the same sets A-H as SZULCZEWSKI (1971) for Kowala I. The set H containing especially rich coral fauna is composed of reddish and grey platy limestones with insertions of marly shales and intercalations of concretions and intraformational conglomerates.

Górno. — The age of the marly limestones on Józefka Hill has been well documented (MAŁKOWSKI 1971) by the following condont species characteristic for the Lower *Polygnathus* asymmetricus Zone (to I α): Schmidtognathus sp., P. asymmetricus ovalis ZIEGLER and KLAP-PER and Ancyrodella rotundiloba alata GLENISTER and KLAPPER (see BIERNAT and SZULCZEWSKI 1975: 2, 11). These limestones also yield Phlogoiderhynchus polonicus (ROEMER) and tetracorals Peneckiella szulczewskii sp. n. and Pterorrhiza berdensis.

Łagów. — For detailed description of lithology see Różkowska and FEDOROWSKI (1972: 271). The Frasnian deposits with abundant disphyllids are exposed at the Łagowica river; conodonts are lacking. The coral-bearing deposits may be of the Lower or Middle Frasnian age.

Sobiekurów. — This is a small quarry exposed close to Sobiekurów village, 0.5 km of Kielce-Opatów road. In the southernmost part of the quarry dark, thick-bedded limestones with rare, simple tetracorals (*Pseudopetraia devonica* SOSHKINA) are exposed. Further to the north large colonies of *Alveolites suborbicularis* and layers with *Amphipora* sp. appear. Above these deposits, in the foot of the northern wall of the quarry, large colonies of *Phillipsastrea plantae* sp. n. occur. The series of deposits is capped by a bed of limestone with numerous colonies of *Phillipsastrea dybowskii* Różkowska, resting in a life position, and forming a distinct horizon, accompanied by rare stromatoporoids and Tabulata. Conodonts have not been so far found there. According to the present author's opinion the lower, dark, thickbedded limestones may be correlated with the F2a-h zone in Belgium. The Upper horizon with *Phillipsastrea* is probably an equivalent of F2i-j niveau, that is, of *Acyrognathus triangularis* Subzone in *Palmatolepis gigas* Zone.

Sudetes

A rich but badly preserved tetracoral fauna has been collected in the Świebodzice depression, appearing *in situ* only in Mokrzeszów and in shales of Witoszów. First two Frasnian species were described by DYBOWSKI (1873). Later on intensive studies on corals were carried out by GUNIA (1962, 1968), Różkowska (1957) and Różkowska and FEDOROWSKI (1972). GUNIA (1968) described and interpreted lithology and stratigraphy of Devonian deposits. *Mokrzeszów.* — For detailed description of lithology see GUNIA (1968, outcrop 15). No conodonts have so far been found there. The tetracoral fauna is rich, but with no *Phillipsastrea*, probably due to unfavourable environmental conditions. An abundant *Tabulophyllum priscum* MÜNSTER, especially common in the upper part of the profile, may indicate the Upper Frasnian age.

Witoszów. — For detailed lithological description see GUNIA (1968, outcrops 6 and 10). In light-grey silty shales with limestone lenses a rich tetracoral fauna occurs. According to recent personal communication of Professor GUNIA, all this fauna rests in situ. The investigated assemblage (table 1) does not resemble that of Mokrzeszów. The disphyllids may indicate the Middle Frasnian age.

Pelcznica. — For detailed lithological description see GUNIA (1968, outcrop 49). The poor and redeposited coral fauna may indicate Middle Frasnian age of the silty shales with lenses of grey limestone, which yield the corals.

Chwaliszów. — See GUNIA (1968, outcrop 61). The sparse tetracoral fauna (table 1) preserved within the conglomerates in the form of pebbles indicates Lower or Middle Frasnian age.

Silesia-Cracow Upland

Olkusz area: Chechlo BB18 borehole. — The Devonian rocks, composed of grey crystalline limestone alternating with dolomites, are recorded at a depth of 221-413 m. At the depth of 394 m in the sediment of biohermal type the present author identified Temnophyllum isetense SOSHKINA. At the depth of 285-319 m Aristophyllum angustum (GÜRICH), Pterorrhiza berdensis SOSHKINA and some disphyllids appear. This poor tetracoral assemblage indicates a Lower or Middle Frasnian age, and is comparable with niveau F2a-h of Belgian division.

Klucze BB46 borehole. — Limestones and calcareous marls predominate within the deposits. Coelenterata have been recorded at an interval of 224-361 m (see table 1). The disphyllids and temnophyllids testify a Lower or Middle Frasnian age.

Karniowice 4 borehole. — According to ŚLÓSARZ and ŻAKOWA (1975:21) Devonian sediments, consisting of dolomites and limestones, appear at interval 95-300 m. A rich tetracoral fauna has been cited by RóżKOWSKA and FEDOROWSKI (1971:277) from the depth of 254-265 m and 286-299 m. The other species, coming from the depth of 294 m and 298 m, are listed herein in table 1. Conodonts found at the depth of 291 m were identified by CHOROW-SKA (1975: 71) as Ancyrodella rotundiloba (Lower-Middle Polygnathus asymmetricus Zone). According to SZULCZEWSKI (personal comm.) the age of the sediments at the depth of 294-298) m is not older than the Middle P. asymmetricus Zone (to I α).

Czubrowice I borehole. — The dolomites from the depth interval 168.4-210 m interbedded with marls and shales have been identified by ŚLÓSARZ and ŻAKOWA (1975:15) as Frasnian; CHOROWSKA (1975) who found *Icryodus symmetricus* BRANSON and MEHL at the depth of 210 m, is of a similar opinion.

Dębnik area: Żarnówczany Dól. — Grey, massive coral bearing limestones are exposed in a small abandoned quarry near Dębnik village. The rich tetracoral assemblage (Różkowska 1957:143) is easily comparable with that of the Upper Frasnian Palmatolepis gigas Zone of the Kielce area (see table 1).

Pomerania

Polanów borehole. — A series of greyish-green, sandy marls and limestones yields Frasnian tetracorals of the F2a-h niveau at the depth interval 1675.0-1955 m, and have been described by Różkowska and FEDOROWSKI (1972:277).

Chojnice borehole. -- Limestones at the depth of 2879-2883 m yield a phillipsastraeid

assemblage of the Rugosa, characteristic for the *Palmatolepis gigas* Zone (to I_{γ}), contemporaneous with Belgian F2i-j niveau.

Kościernica borehole. — At the depth of 2023-2025 m Peneckiella szulczewskii sp. n. occurs in grey limestones. This species which is also known from the Józefka hill near Górno in the Holy Cross Mts indicates the Lower Polygnathus asymmetricus Zone (= to I α).

Wyszebórz borehole. — Greyish-green marly limestones, yielding crushed branches of Disphyllum caespitosum (GOLDFUSS) and badly preserved temnophyllids represent Frasnian at the depth of 2019-2021 m. The coral assemblage probably indicates the Lower or Middle Frasnian age.

Lublin region

Niesiolowice IG-1 borehole. — Dark, fine-grained crystalline limestones, with numerous massive and dendroid stromatoporoids, bear rare Frasnian tetracorals *Pterorrhiza multizonata* (REED) and *Temnophyllum* sp. at the depth interval 1330-1336 m. Higher up, at the depth of 1258-1264 m, the species listed in table 1 occur in the biohermal limestone. They may indicate Lower or Middle Frasnian age.

Tyszowce IG-1 borehole. — The tetracorals appear at the depth interval of 2000-2053 m, appertaining to the Zubowicka Formation (see MILACZEWSKI 1975, for lithological description). Rachaniephyllum andreae sp. n., which occurs in other localities together with a phillipsastraeid fauna, indicates Upper Frasnian age.

Rachanie IG-1 borehole. — Dark grey, alternating granular and pelitic limestones with brachiopod banks, yield sporadic fasciculate Rachaniephyllum andreae sp. n. and Phillipsastrea ananas (GOLDFUSS) at the depth interval 1808-1821 m. At the depth interval 1871.2-1878.4 m Rachaniephyllum andreae sp. n. and some brachiopods occur in dark greyish-brown, pelitic and microcrystalline limestones. According to MILACZEWSKI (1975), the limestones of both depths cited appertain to the Frasnian Zubowicka Formation. Occurrence of Phillipsastrea ananas (GOLDFUSS) settles the age as F2i-j niveau, i. e. the Palmatolepis gigas Zone.

Korczmin IG-1 borehole. — At the depth interval of 2009-2080 m dark greyish-brown limestones bear numerous brachiopods, and the tetracoral assemblage with *Rachaniephyllum* and reae sp. n., that settles the Upper Frasnian age.

Korczmin IG-2 borehole. — At the depth of 1951-1954 m the phillipsastraeid fauna Smithicyathus lacunosus (GÜRICH) and Phillipsastrea smithi (Różkowska) determines the Upper Frasnian age.

Korczmin IG-3 borehole. — At the depth interval 1978-1993 m dark greyish-brown, pelitic, laminated and nodular limestones, and grey pelitic dolomites yield tetracoral fauna Smithicyathus lubliniensis sp. n. and Aristophyllum irenae which probably indicate the Palmatolepis gigas Zone.

Kock IG-2 borehole. — At the depth interval 3124-3140 m the greyish-brown, fine crystalline limestone of the Zubowicka Formation yields both the Upper Frasnian and the longlasting tetracorals (see table 1).

Tomaszów Lubelski IG-1 borehole. — At the depth interval 1796-1798 m dark grey, fine crystalline, unbedded dolomitic limestones of the Zubowicka Formation yield numerous recrystallized coelenterates, but only subordinately tetracorals, which may indicate the Upper Frasnian age.

At the depth interval 1808-1813 m dark nodular, dolomitic, locally pelitic and cryptocrystalline limestones contain rare *Phillipsastrea ibergensis* (ROEMER), *Tabulophyllum priscum* MÜNSTER which indicate the Upper Frasnian age. At the depth interval 1833-1839 m dark, grey, fine-grained coral limestone, chiefly composed of dendroid coelenterates bears rare *Phillipsastrea ananas* (GOLDFUSS), *Pterorrhiza multizonata* (REED) which indicate the *Palmatolepis gigas* Zone (= to I, niveau F2i-j in Belgium). Bąkowa IG-1 borehole. — Depth1672-1677 m: Dark dolomitic limestone with Thamnophyllum kozlowskii Różkowska, Pterorrhiza berdensis (SOSHKINA), Temnophyllum turbinatum HILL, Acantophyllum frasniense sp. n. indicating the Lower or Middle Frasnian.

Depth 1708-1711 m: Dark, fine-grained limestones yield Thamnophyllum monozonatum SOSH-KINA, T. kozlowskii Różkowska, Disphyllum kostetskae (SOSHKINA), Temnophyllum turbinatum HILL, indicating Lower or Middle Frasnian.

Depth 1805-1811 m: Dark grey, marly limestone, with rare Aristophyllum irenae sp. n., GrypophyHum unduliseptatum IVANIA, indicating perhaps the same age as above.

Depth 1817-1823 m: Dark grey, marly limestone with sporadic *Thamnophyllum kozlowskii* Różkowska, *Temnophyllum isetense* SOSHKINA, *T. menyouense* HILL and JELL indicating the same age as above.

Depth 1829-1935 m: Dark limy shales with brachiopods and solitary, Lower or Middle Frasnian tetracorals represented by *Breviphrentis* sp., *Pterorrhiza multizonata* (REED), *Temno-phyllum turbinatum* HILL, *T. menyouense* HILL and JELL, *Acanthophyllum frasniense* sp. n.,

Depth 1856-1883 m: Dark marly limestones with black shales' intercalations. Rugosa are diversified, Middle or Lower Frasnian: *Thamnophyllum kozlowskii* Różkowska, *Pterorrhiza multizonata* (REED), *P. berdensis* (SOSHKINA), *T. isetense* SOSHKINA, *T. turbinatum* HILL, *T. minia-rense* (SOSHKINA), *Aristophyllum irenae* sp. n.

Depth 1889 m: The deposits are similar to these characterized above but with Acanthophyllum frasniense sp. n. only.

Depth 1895-1913: Black marly limestones with Coelenterata. At the depth of 1907-1913 m they are crowded with massive stromatoporoids. Diversified Rugosa indicate the same age as above.

Depth 1931-1947 m: Black marly limestones, interbedded with black shales, yield lower or Middle Frasnian tetracorals.

Depth 1966-1976 m: Dark grey, fine-grained limestone crowded with Coelenterata. Tetracoralla such as *Pterorrhiza multizonata* (REED), *Temnophyllum isetense* SOSHKINA, *Aristophyllum irenae* sp. n., *Acanthophyllum frasniense* sp. n., indicate Lower of Middle Frasnian.

Depth 1981-1984 m: Black shales interbedded with black mudstones yield *Pterorrhiza* multizonata (REED).

Depth 1984-1996 m: Dark grey marly limestone with *Pterorrhiza multizonata* (REED), brachiopods and crinoid stems belongs probably to Lower or Middle Frasnian.

According to Pajchlowa (1975) the Frasnian deposits appear only as late as at the depth of 1398-1462 m. The tetracoral fauna here investigated indicates the Lower or Middle Frasnian age of the deposits resting down to the depth of 1996 m. The corals bearing strata belong to *Polygnathus asymmetricus* Zone, synchronic with the Belgian F1 or F2a-h niveau.

FRASNIAN TETRACORALS AS AGE INDICATORS

A large part of the Upper Givetian and Frasnian deposits in Poland consists of biohermal or biostromal limestones, containing only a few or no conodonts, but bearing abundant coral faunas instead. This caused a lack of detailed subdivision of these deposits on the one hand and an increase of stratigraphic importance of tetracorals on the other. The similar biohermal Frasnian deposits in Belgium have been subdivided by COEN (1968) and COEN-AUBERT (1972) into 3 substages:

F1 with Hexagonaria GÜRICH and Tabulata

F2a-h with Disphyllum de FROMENTEL, Pterorrhiza EHRENBERG, Thamnophyllum PENECKE. F2i-j with massive colonial Phillipsastraeidae ROEMER and Iowaphyllum STUMM.

In the Polish zonation of the Frasnian deposits, only two subzones are recognized: *Poly*gnathus asymmetricus Zone and *Palmatolepis gigas* Zone. An attempt to correlate stratigraphic distribution of particular coral species with these zones is given in the table 1.

TABLE 1

Geographic and stratigraphic range of Frasnian tetracorals in Poland

Species		Holy Cross Mountains								Sile Cra Up	esia acov lan	- w d			Su	dete	es]	Por	ner	ani	a			Lut	olin	R	egi	on			Conodor	t Zones			
		Zagórze	Wietrznia	Beis Carlis	Karczówka	Czarnów	Kowala II	Kowala I Rolechowice	Górno	Łagów	Sobiekurów		Czubrowice	Karniowice	Olkusz	Dellamian	Mokrzezów	Chwaliszów	Witoszów	Pełcznica	Lubiechów		Zerniki	Kościernica	Chojnice	Polanow	wyszoborz	Debours	Korczmin	Tomaszów Lubelski	Tvszowce	Kock	Rachanie	Niesiołowice		Polygnathus asymmetricus Zone	Palmatolepis gigas Zone
1	2	3	41:	5 (5 7	8	9	101	1 12	2 13	14	115	116	17 1	18 1	9 2	0 2	1 22	2 23	24	25	26 2	27 2	28 2	29 3	03	1 3	23	3 34	4 35	5 36	5137	//38	3 39	<u> </u>	40	41
Pseudopetraia devonica SOSHKINA	-		_ -	_ -		_		. _	_ _	_	±			_	_ -			_ _	-		_				_	_ -	╢	_ _		_ _	-		_ _	-	- -	+	
Breviphrentis sp.	- _				_ _				_ _	_	_	L			_ -			_ _	-									_ -	₽ _	- -			_ _		┨_	+	
Craterophyllum humile sp. n.					_ _		<u> +</u>		_ _		_	L		_ -				_ _	_ _	.			_ .	_ .	_ _	_ _		_ _	_ _	_ _	. _	_ _			_		+
Heliophyllum proliferum (FRECH non ROEMER)		_		_ -	_ _		_		_ _	_		L		_ -	_ _	_ _		_ _	_ _		+		_ .			_ _		_ _	_ _	_ _		_ _		_ _	╢_	+	
Thamnophyllum soshkinae Różkowska			<u>±1</u> :	+	_ _	_	_		_ _			L			_ _			_[_	_ _			_ _	_ -			_ _		_ _		_ _		_				+	
Thamnophyllum monozonatum Soshkina		+	<u>+ </u>	<u>+ </u>	_ _			<u> + </u> _	_ _		_	L		<u>+</u>	_ _		_ _	_ _	_ _						_	+	⊥	_ +	Ľ	<u> +</u>	_	_ _		_	1_	+	+
Thamnophyllum kozlowskii Różkowska		+	<u>+ </u>	+	_ _	_		<u> + </u> _	_ _	_		L		_ -	_ _			_ _								± _				<u>+</u>	_					+	+
Peneckiella minor kunthi (DAMES)		_	_ _	_ _	_ _	_			_ _	_ _		L			_ _		_ +	<u>- </u> _	_									_	_ _	_							+
Peneckiella fascicularis (SOSHKINA)					_									<u>+</u>]	<u>+ </u>										+			_ _		-			_			+	
Peneckiella szulczewskii sp. n.									+	-									_					+												+	
Sudetia lateseptata Różkowska																	+	-																			+
Pterorrhiza multizonata (REED)															-	⊦∥			+				- -	+ -	+ -	$+ ^{-}$		+	- _	+						+	+
Pterorrhiza berdensis (SOSHKINA)			+-	+				\pm						<u>+ </u>	+[_									_ -	+			1	-						+	+
Pterorrhiza czarnockii (Różkowska)		+	+ .	<u>+ </u>	_ _	_			_+		_			_	_ -	<u>+ </u> _	_ _	_ _	+				_ ·	+ _				_ _	_[_	_						+	
Pterorrhiza ultima (WALTHER)	- _		<u>+ </u>	+ -	+ _									<u>+ </u>																			_			+	+
Pterorrhiza siemiradzkii (Różkowska)			+																				_	_		_ _					_					+	
Phillipsastrea plantana sp. n.					_						+			_[-			_							- -	_ -	-				-	_	_			1-		+
Phillipsastrea smithi (Różkowska)					_ _		_		- -	-	1			- -	- -		- -	- -	-			_ -	 	- -	- -	- -	╢	-	+	-	1	1-	1		1		+
Phillipsastrea macouni (SMITH)			- -	- -	+ -	-			- -	-	1			- -	- -		- -	- -	-	-		- -		- -	- -	- -	╢	- -	-	-	·	-	-	1	1-		+
Phillipsastrea friedbergi (Różkowska)		-		- -	+++	.		-	-	-				- -	- -	╷	- -	- -	-		-		- -	- -	- -	- -	╢	- -	-	-	- -	-	·	1-	1-		+
Phillipsastrea ibergensis (ROEMER)			- -	- -	+ -	- -		-	-	-	-	1-	- ·	- -	- -		- -		-	-	-	- -	- -	- -	- -	- -	- -	- -	- -	1-	¦∓		.	-	1-		+
Phillipsastrea ibergensis progressa (Różkowska)				_	+			<u> -</u> -			1			- -			- -		-	-	-	- -	- -	- -	- -	- -	╢	- -	- -	- <u>+</u>	1	[-	·	-	1-		+

1	<u> </u>									0				π	ī	- 1				1			1								
Phillipsastrea macrommata (ROEMER)		<u> +</u>	<u> </u>	<u> ± _</u>		<u>+</u> _	<u> +</u>	<u>: _</u>		_ _	_		_[-		_ _				_ _			_		_ -	<u>+ _</u>		 _ _				+
Phillipsastrea ananas (GOLDFUSS)		<u> +</u>	+	+_		<u>+ </u>		-			_ _			ĿĽ			_ _				+		L		+ +	<u>+</u>	+ _	_ .			+
Phillipsastrea samsonowiczi (Różkowska)				<u>+</u> _		+	_ _				_						_ _			_		_		_ _	_ _	_					+
Phillipsastrea dybowskii (Różkowska)			_			+	_ _	_		±L			_ _												_ _	_				-	ł
Smithicyathus lacunosus (GÜRICH)		+		+ +		+	_+	-		<u>+</u> _			_ _		_							_	L.		+	_				-	+
Smithicyathus lubliniensis sp. n.							_ _								_ _										+	· [+
Marisastrum roemeri (VERNEUIL & HAIME)		+		+_		+	_ _								_ _															-	+
Marisastrum sanctacrucense (MOENKE)		+											_ _		_ _														+		
Marisastrum cordis (Różkowska)				+			_ _						_ _		_ _		_ _												+		
Marisastrum sedgewicki (M. EDw. & H.)		- +	·				_ _	_							_ _	+	+												+		
Dębnikiella formosa sp. n.		+	·				_ _	_							_ _																÷
Ceratophyllum kielcense sp. n.		+	+	+_	_			_		+		+			_ _										_				+		
Ceratophyllum heterophylloides (FRECH)	۱–	- +	- +		_		_ _				+	+	+		_ _		++	·											+		
Haplothecia aff. filata (SCHLOTHEIM)			+				_ _	_							_ _														+		
Trigonella sandaliformis sp. n.					_	<u>+</u>		_							_ _																+
Frechastraea kunthi (FRECH)							_ _	_ _					_ _				_		+	_						_				-	+
Frechastraea bowerbanki (M. EDW. & H.)		+	-		_			_																						-	+
Frechastraea goldfussi (M. EDw. & H.)		+	-	<u> +</u> _	+	<u>+</u> .	_ _	_						<u>+ </u> _												_					+
Frechastraea pentagona (GOLDFUSS)		+	-	<u>+</u> _	_	+	_ _							<u>+</u>			_ _			_						_					+
Frechastraea micrommata (ROEMER)		_ +	- _	<u>+</u> _	_			_					_ _							_						_					+
Frechastraea micrommata minima (Różkowska)				+_	_			_					_ _		_]_									+
Disphyllum hsianghsienense YOH	<u> </u>	- +	-						+			+			_1±		+				+ -	-		+	+	_			+		+
Disphyllum cylindricum (SOSHKINA)		+	+				_ _	+	+		+	+	+		_		_										_		+		
Disphyllum caespitosum (GOLDFUSS)	4	- +	-1+		+			+	+	ĺ		+	+		+	+						+							+		
Disphyllum wirbelauense PICKET				<u> _</u> _			+	_							_														+		+
Disphyllum kweihsiense YOH		_+	. +				<u>+ _</u>	+				+	+ _		<u>+</u>		+					-							+		
Aristophyllum angustum Gürich		+	+			-	+	+				+	+											+					+		+
Aristophyllum irenae sp. n.						+																		+-	+				+		+
Charactophyllum lotzei ALTEVOGT			-														+++														+
Piceaphyllum pronini (SOSHKINA)						+		_									+												+		+
Piceaphyllum breviseptum sp. n.						-	+								+														+		+
Temnophyllum isetense Soshkina	-	-	+	+			+						+				+					- +		+					+		
Temnophyllum menyouense Hill & JELL	-	-	+	+		-	+																						+		
			1					-[[1-	_					-		-	l[-[- -				

table 1 (continued)

. 1	2	3	4	5 6	5 7	8	9	10	11	2 1	3 14	115	16	17	18	920	0 21	22	23	24 2	5 2	6 27	28	29	03	1 32	2 33	34	35	36	37	38	39	40		41
Temnophyllum turbinatum HILL]		+ _	_ _			+																	_ _		+		+	+		_		+		+
Temnophyllum verum sp. n.			+	+												+																		+		
Temnophyllum elongatum sp. n.				_ _	_ _	_ _				_ _	+						_			_ _		_ _	_	_ _						_		_		+		
Temnophyllum miniarense (SOSHKINA)			+		_ _	_ _	 		_ _		_				_		_						_		_ +	-	+		_			_		+		
Alaiophyllum jurushevskyi (GORIANOV)		_		+ _		_					_		ì_									_	_		 _	╨		Ĺ						+		
Fedorowskicyathus similis sp. n.		_		_	_ _		+		_	<u>+ </u> _		_							_		_	_ +			_ _	_	_						,			+
Mictophyllum guniae sp. n.					_ _	_ _											<u>+</u>		<u>+</u>		_L	_		_ -					_	_			_		L	+
Chonophyllum dulce sp. n.			+	_ _	_ _	_ _ [.]	_	<u> </u>		_ _			_						_		_	_		_ _	_ _			_		Ц			_			+
Iowaphyllum oliveri sp. n.		_	+		<u> </u> +	- _	+			_ _	_ _		<u> </u>							_ -					_ _			_	_							+
Kowalaephyllum excelsum sp. n.		_		_ _		_	+			_ _			_												_ _	_		_	_							+
Kowalaephyllum poculum sp. n.		_	+	_ _	_ _	_				_ _			_				_!			_ĺ_		_					_						_			+
Kowalaephyllum mirabile sp. n.				_ _	_ _	_ _	+			_ _			_								_	_			_ _	⊥	_									+
Tabulophyllum densum sp. n.		+	+		_ _					_ _	_		_				_					_		_ _	_ _		_	<u> +</u>		_				+		+
Tabulophyllum priscum (MÜNSTER)			+			_ _	+				_ +	-					+				+	_			_			+	+			_ -			.	<u>+</u>
Tabulophyllum mconnelli (WHITEAVES)					_ _	_	+	<u> _</u>			_ _						_			_ _					_ _		_		_			_ -	_			+
Tabulophyllum irregulare sp. n.			+			_	+			_ _						+	_					_		_ _	_ _			+	_].	+
Acanthophyllum frasniense sp. n.							ļ								_ _		_ _								_ _	İL	<u> +</u>	+	_	_		_ _		+	[.	
Grypophyllum unduliseptatum (IVANIA)			+	<u>+</u> _		_			_ _	_ _	+	-		+	+		+		+	+_		_ _			<u> +</u>		<u> +</u>		<u>+</u>	_	<u>+ </u>	_	<u>+</u>].	+		
Rachaniephyllum andreae sp. n.																				1		1						+		+	.	+!			J	+

The fine structure of septa, although trabecular in most cases investigated in the present paper, differs in particular genera or groups of genera, and may be characterized as follows:

(1) The fibro-normal fine structure. This is a rare phenomenon among Frasnian tetracorals. In the present study it has been found only in *Pseudopetraia* SOSHKINA (family Petraiidae DE KONINCK), in *Acanthophyllum* DYBOWSKI and *Grypophyllum* WEDEKIND (family Ptenophyllidae WEDEKIND).

(2) Monacanthine trabeculae are arranged in various patterns.

(a) In the *disphylloid pattern* the trabeculae are parallel to one another and are set at various angles to the horizontal. They are to be seen in *Aristophyllum* BULVANKER *et al.* (family Disphyllidae HILL) and in *Mictophyllum* LANG and SMITH (family Mictophyllidae HILL).

(b) The charactophylloid pattern (PEDDER 1972) is characteristic for Charactophyllum SIMPSON, Temnophyllum WALTHER, Alaiophyllum GORIANOV, Piceaphyllum gen. n. All are included in the family Charactophyllidae PEDDER.

(c) The rhipidacanthine fine structure (JELL, 1969) with fans of bifurcated trabeculae, are very widely spread in most but not all genera of the family Phillipsastraeidae ROEMER. The present author ascribes it to the following genera and subfamilies: Smithicyathus gen. n., Phillipsastrea (Phillipsastraeinae ROEMER), Pterorrhiza EHRENBERG, Peneckiella SOSHKINA (Phacellophyllinae WEDEKIND), Ceratophyllum GÜRICH, Debnikiella gen. n., Haplothecia SCHLOTHEIM (Marisastrinae RÓŻKOWSKA). In Trigonella gen. n. the fine structure is not visible.

(d) Except for the fine structure sensu stricto, there are structures of peripheral parts of septa, which also possess some taxonomic value.

 (d_1) The naotic septa representing an evolutionary advanced stage of septal development, in which the peripheral septal ends form a combination of saucer-like or plate-like dissepiments and of parallel or divergent radial trabecular rods. The genera *Craterophyllum* FOERSTE (family Arachnophyllidae DYBOWSKI), *Chonophyllum* M. EDW.-H., *Kowalaephyllum* gen. n., *Iowaphyllum* STUMM (family Chonophyllidae HOLMES) have this septal structure.

 (d_2) In *Tabulophyllum* FENTON and FENTON (family Chonophyllidae) the peripheral septal parts are represented only by divergent trabecular rods. Plate-like dissepiments are lacking.

 (d_3) In *Rachaniephyllum* gen. n. (family Cystiphyllidae M. EDW.-H.) the septa are reduced to short, pinnately arranged septal spines.

The taxonomic importance of the fine structure has been variously evaluated by different students, e. g. VAUGHAN (1943) considered it to be diagnostic for genera, while according to LECOMPTE (1952) and JELL (1969) it characterizes families. The present author's observations indicate that the taxonomic rank of this feature varies among particular groups of Frasnian Rugosa. Namely: the rhipidacanthine fine structure is common among phillipsastraeids and met in three subfamilies: Phillipsastraeinae ROEMER, Phacellophyllinae WEDEKIND, and Marisastrinae RÓŻKOWSKA. *Frechastraea* SCRUTTON having fan-shaped trabeculae, which are not bifurcated, may not belong to the subfamily Phillipsastraeinae.

All genera of the family Charactophyllidae PEDDER have fine undulated trabeculae, which are rarely met in other Frasnian tetracorals. These charactophylloid trabeculae have been described for the genera *Charactophyllum*, *Temnophyllum*, *Piceaphyllum* gen. n. However, the cited genera have been included into this family mainly on the basis of this type of fine structure.

The various types of fine structure may independently appear in different lineages. The same is true for modifications of septal morphology, described above. They are diagnostic for some genera, but may also occur on different stages of tetracoral evolution. The Frasnian representatives of the genera *Craterophyllum* and *Chonophyllum* described herein with a question mark, are probably only homeomorphs of the Silurian type-species of those genera in spite of the identical morphology of their septa.

MARIA RÓŻKOWSKA

SYSTEMATIC PART

Order Rugosa MILNE-EDWARDS and HAIME, 1850 Family Petraiidae de KONINCK, 1872 Genus Pseudopetraia SOSHKINA, 1951 non SCHINDEWOLF, 1924 Pseudopetraia devonica SOSHKINA, 1951

(pl. 1: 7a, b)

1951. Pseudopetrala devonica Soshkina: 24, pl. 2: 1-9, figs 1-4.
1960. Pseudopetrala devonica Soshkina; Spassky: 22, pl. 1: 1-2; pl. 26: 1-3 (see synonymy).
1962. Pseudopetrala devonica Soshkina; Soshkina, Dobroljubova and Kabakovitsh: 321, pl. 12: 2.

Material. — One transversely and longitudinally sectioned specimen without a proximal end.

Dimensions (in mm): L n/d UAM TcI/1 16 18:5.5

Supplementary description. — An available part of the subcylindrical corallite possesses a deep cup-shaped calice. Major septa, which deep into a peripheral wall, are long, straight, wedge-shaped, united into systems, and slightly differentiated in length. The cardinal and counter septa, which rest in a kind of fossulae, almost meet each other in the centre of corallite. Minor septa are restricted mostly to the wall. Only some of them slightly extend into the corallite lumen to form a kind of knobs.

Remarks. — SCHINDEWOLF (1924) established a new genus *Pseudopetraia* on the basis of a different ontogeny of the Upper Devonian coral from Saalfeld in comparison to that of the Silurian genus *Petraia* MÜNSTER. He did not describe any species of *Pseudopetraia*. The neotype species, *P. devonica* SOSHKINA from Eifelian of the USSR was introduced by SOSHKINA (1951: 24). She also demonstrated that the minor septa in *P. devonica* appear cyclically. The Polish specimen resembles the type specimen in having a similar n/d ratio and slightly similar arrangement of septa. It differs in possessing concave tabulae. The last character is variable in the Russian specimens, however (SOSHKINA 1951: 8; SPASSKY 1960, pl. 26: 1-3).

Family Streptelasmatidae NICHOLSON in NICHOLSON and LYDEKKER, 1889. Genus Breviphrentis STUMM, 1949 (?) Breviphrentis sp.

(pl. 1: 1a, b)

Material. — One fragmentary specimen.

		L	n/đ
Dimensions (in mm):	IG-1429. II. 1	23	23/18

Description. — Irregularly curved, wedge-shaped septa of two orders are fibro-normal in their fine structure. Their thickened peripheral parts form a 1-2 mm thick septotheca. Major septa are almost equal in length, occupying approximately 1/2 of the corallite radius. Those of the cardinal quadrants are inclined obliquely towards the shortened cardinal septum, forming an U-shaped cardinal fossula. Minor septa reach slightly less than one half of length of the major ones. A wide tabularium is composed of complete horizontal tabulae.

Remarks. — The available specimen is too fragmentary for certain identification even on a generic level. Zmeinogorskia SPASSKY (1960: 32) from Middle Devonian of the Rudnyi Altai, possessing similar septa and tabulae, differs from the discussed specimen in not having a U-shaped fossula. *Alaiophyllum* IVANIA (1965: 10) differs in having thickened septa in the cardinal quadrants and well developed dissepimentarium. *Breviphrentis* seems to be the most similar genus.

> Family Arachnophyllidae Dybowski, 1873 Genus Craterophyllum FOERSTE, 1909 Craterophyllum (?) humile sp. n.

> > (pl. 1: 8a, b; fig. 2: a, b)

Holotype: UAM No. Tc1/2; pl. 1: 8a, b; fig. 2a, b. Type horizon: Palmatolepsis gigas Zone. Type locality: Kowala II, Holy Cross Mts. Derivation of the name: Lat. humilis — low.

Diagnosis. — Corallite trochoid with everted calice; major and minor septa naotic, equal in length and width, densely spaced; axial tabellae short forming a concave floor; small elon-gated dissepiments in a wide dissepimentarium; rejuvenescences present.

Material. — One silicified specimen.

Fig. 2

Craterophyllum (?) humile sp. n. a — septal structure in the dissepimentarium in cross section, $\times 3$; b — longitudinal section, $\times 3.4$. Holotype (UAM Tc/2), Kowala II.

T

Description. — The calicular part of the corallite is composed of a series of superposed calicular margins 0.5-1 mm apart. The calice has a wide reflex peripheral platform and a narrow saucer-shaped central region. The naotic septa, 2 mm wide at the periphery, become thinner and lamellar near the tabularium. They bear crossbar carinae on their lamellar parts and terminate at the tabularium boundary. Peripheral, disintegrated parts of septa are composed of convex or rounded plates and of fine spine-like radiating trabeculae. Similar septa have been described by LANG (1926, fig. 2, nos 3, 4). Interseptal loculi are only 0.2 mm wide and are filled up with fine dissepiments.

In the vertical section of the reflex calicular platform there are approximately 20 series of fine, elongated dissepiments arranged in horizontal rows. In the inner part of the corallite similar dissepiments are standing in vertical rows. Tabulae are incomplete, small and concave.

Remarks. — This specimen is similar to, but not certainly congeneric with *Craterophyllum* (Dr. OLIVER's personal comm., 1976). Consequently, the new species is only provisionally assigned to the genus *Craterophyllum*. It may belong to quite a different lineage. 2 - Palaeontologia Polonica No. 40

MARIA RÓŻKOWSKA

Family Zaphrentidae MILNE-EDWARDS and HAIME, 1850 Genus Heliophyllum HALL in DANA, 1846 Heliophyllum proliferum (FRECH, 1885, non ROEMER, 1855)

(pl. 1:4)

1885. Hallia prolifera (ROEMER); FRECH: 82, pl. 7: 5a, b. 1966. Charactophyllum proliferum (ROEMER); GUNIA: 304, pl. 2: 8; pl. 3: 1. non 1855. Cyathophyllum proliferum ROEMER: 29, pl. 6: 10.

Material. — One thin cross-section of a fragmentary corallite (U. Wr. D. Św./K 1).

Description. — Major and minor septa of the preserved fragment of the corallite are almost equal in length and thickness. They bear yardarm carinae, which are slightly more prominent at the periphery of corallite. Most of the axial region of corallite is damaged, but, in part of it, there is a peripheral offset preserved. The latter incorporated some inner ends of septa of the parent corallite, and produced new long septa at its new wall. These new septa are carinated, but their yardarm carinae are covered with stereoplasmatic layers.

Remarks. — Since the specimen of *Cyathophyllum proliferum* (ROEMER 1855) appeared to be a tabulate coral, the corallites desribed subsequently by FRECH (1885) as *Hallia prolifera* (ROEMER 1855) and by GUNIA (1966) as *Charactophyllum proliferum* (ROEMER 1855), became automatically excluded from that species. The specimen identified by GUNIA (*l. c.*) is here redescribed as *Heliophyllum proliferum* (FRECH 1855, *non* ROEMER 1855). This identification is only a tentative one, as FRECH'S (1885) specimen was most probably lost together with the rest of his collection.

Family Phillipsastraeidae ROEMER, 1883 Subfamily Phillipsastraeinae ROEMER, 1883 Genus Smithicyathus gen. n.

Type species: Phillipsastrea cincta SMITH, 1945.

Derivation of the name: Named in honour of the late Dr. STANLEY SMITH, Bristol, Great Britain.

Species assigned: Phillipsastrea cincta SMITH, 1945; Pachyphyllum lacunosum GÜRICH, 1896; Smithicyathus lubliniensis sp. n.

Stratigraphic and geographic range: Canada. Poland; Upper Frasnian.

Diagnosis. — Fan-shaped trabeculae of the rhipidacanthine type supplement the SMITH's (1945: 43) diagnosis.

Remarks. — The new genus is distinguished from all genera of Phillipsastraeinae by its epithecate (tripartite) wall (SORAUF 1967 in JELL 1969: 62), surrounding corallites within the corallum. The genus *Stellatophyllum* SPASSKY (1968: 30) with its massive colony, having "uninterrupted" walls is most similar to the new genus. In *Smithicyathus*, however, there is a trend to surround more than a single corallite with an "epithecal" wall; to form locally a subphace-loid shape, and to produce intracalicinal offsets.

Smithicyathus lubliniensis sp. n.

(pl. 1: 2 and 3*a*-*c*)

Holotype: IG-1429. II. 5; pl. 1: 3a-c.

Type horizon: Upper Frasnian, stratum with Phillipsastrea.

Type locality: Borehole Korczmin IG-III, depth 1891-1897 m. Derivation of the name: after the town Lublin.

Diagnosis. — A cerioid-subphaceloid corallum with short septa of two orders, separated from the epitheca by lonsdaleoid dissepiments; the epitheca surrounds only one corallite in its ephebic stage; tabulae complete, slightly concave or sagging.

Material. — Four fragments of coralla, 5 thin sections.

Dimensions (in mm):

d:t:d n/d IG-1429. II. 5 1:2.5:1 16/5

Description. — Irregularly polygonal corallites are unequally arranged within the colonies, having their centres at a distance of 4-5 mm from one another. Thickened septa, almost equal in length, form a distinct ring around tabularia. They only slightly extend out of the zone of the horseshoe dissepiments. A zone of lonsdaleoid dissepiments 0.4-2 mm wide, separates them from external walls of corallites. In the longitudinal section the internal part of the dissepimentarium consists of a 0.3 mm wide row of small horseshoe dissepiments. Peripherally they become replaced by flat, irregular, rarely globose, lonsdaleoid dissepiments. Tabulae usually complete, horizontal or concave, densely spaced of about 7 in 5 mm. In cross-section trabeculae densely spaced with 0.1-0.2 mm in width. In the thickened part of septa they are set in 1-2 rows. In longitudinal section they form very low fans with rhipidacanthine trabeculae entirely in contact.

Blastogeny. — The only record on the mode of offsetting within the genus Smithicyathus gen. n. was that of Różkowska (1953) who described an appearance of 2-3 intracalicinal offsets in a dissepimental tissue of Pachyphyllum lacunosum GÜRICH, 1896. In S. lubliniense sp. n. offsets appear near an external wall of a parent corallite. For a long period of development they are not separated from a parent corallite by any type of a wall. Such a group of corallites, surrounded by a common epitheca, may be compared with Phillipsastrea cincta SMITH. A new epitheca between a parent and an offset appears when the latter already possesses well developed thickened septa and a pseudotheca.

Variation. — Inter- and intra-colonial variation is not considerable. The main differences are: 1) occasional removal of corallites, causing gaps in the cerioid corallum; 2) slightly elongated major septa, which in a few observed cases may almost reach an external wall.

Remarks. — *Phillipsastrea cincta* SMITH with its almost completely cerioid colony is the most similar species. In *Pachyphyllum lacunosum* GÜRICH the colony is distinctly subphace-loid; the tabulae are incomplete and the lonsdaleoid dissepimentarium is absent.

Genus Phillipsastrea d'Orbigny, 1849 Phillipsastrea plantana sp. n.

(pl. 1: 9; 2: 1a, b)

Holotype: UAM No. TcI/4; pl. 2: 1a, b. Type horizon: Upper Frasnian, F2i-j niveau, stratum with Phillipsastrea. Type locality: Sobiekurów, Planta quarry, Holy Cross Mts. Derivation of the name: after Planta quarry.

Diagnosis. — Pseudocerioid coralla with corallites 9-11 mm in diameter; major septa long, nearly reaching a corallite axis, carinated only in the inner pseudotheca. Horseshoe dissepiments arranged in one discontinuous row; tabulae incomplete, convex; trabeculae composed, short, set in high, narrow fans.

Material. — Two fragmentary coralla, 5 thin sections.

2*

Dimensions (in mm):

	Dc	Dt	sI
UAM TcI/4	9-11	5-7.2	16-20

Description. — Transverse section. Corallites in a tabular corallum are irregular in shape, and separated by a strongly zigzagged pseudotheca; straight major septa, attenuated in the dissepimentarium and tabularium, spindle-shaped and slightly dilated in the ring of horseshoe dissepiments, form a discontinuous septo-cyathotheca. The minor septa, which rarely enter the tabularium, are slightly thinner than the major ones. In the longitudinal section three zones may be distinguished within the dissepimentarium: (1) peripheral zone, which is composed of about 4 rows of horizontal and flat dissepiments; (2) zone of horseshoe dissepiments, forming an irregular row; (3) internal zone, in which dissepiments are arranged in 1-3, very steep, almost vertical rows. Tabularium consists of slightly concave, horizontal or oblique, sometimes alternating periaxial tabellae, and of flat or convex axial tabellae, some of which may bear accessory plates.

Fine structure is trabecular; particular trabeculae form small nodules on surfaces of thin external parts of septa. Dimensions of trabeculae in thin septa reach 0.1-0.2 mm while those of dilated parts of septa may reach up to 0.3 mm in diameter. Trabeculae are united into fans, but the preservation is bad, and bifurcation of trabeculae is only faintly visible.

Remarks. — The species described differs from the most similar *P. macrommata* (ROEMER), in having more numerous septa (16-20 against 14-15 in *P. macrommata*), by a larger diameter of the tabularium, more strongly zigzagged outer pseudotheca, and discontinuous trabecular fans.

Subfamily Phacellophyllinae WEDEKIND, 1921 Genus Pterorrhiza EHRENBERG, 1834 Pterorrhiza multizonata (REED, 1922)

(pl. 1: 5, 6a, b)

1922. Cyathophyllum (Thamnophyllum) multizonatum REED: 12, pl. 1: 7-12; pl. 2: 1-7.

1935. Macgeea multizonata REED; LANG and SMITH: pl. 37: 13-15.

1968. Macgeea cf. multizonata (Reed); GUNIA: 149, pl. 4: 11, 12.

non 1951. Macgeea multizonata (REED); SOSHKINA: 80-81: pl. 14: 1-4.

non 1953. Macgeea cf. multizonata (REED); Różkowska: 27, pl. 3: 1-7.

Material. — Nine specimens; 15 thin sections, 6 peels. Dimensions (in mm):

	L	Dc	sI
IG-1429. II. 3	20	22	34

Remarks. — The discussed species is one of the most frequent in the Lublin region. Particular corallites closely resemble in all morphological characters of major importance the Indian topotype, illustrated by LANG and SMITH (1935): septa are thick and spindle-shaped in the dissepimentarium; the minor ones only penetrate the tabularium. The major septa thin rapidly in the tabularium, becoming thread-like thin and curved. Carinae and lateral knobs on septa are absent. Horseshoe dissepiments are thick-walled (pl. 1: 6a). Very fine, steeply inclined internal dissepiments form 1-2 rows. Broad concave tabularium consists of sagging axial tabellae. Fine structure is typically rhipidacanthine with trabeculae 0.1-0.3 mm in width. The Lublin specimens differ from those described by SOSHKINA (1951) and by RÓŻKOWSKA (1953) in having very short thickened peripheral septal ends.

Genus Peneckiella SOSHKINA, 1939 Peneckiella fascicularis (SOSHKINA, 1952)

(pl. 2: 3a, b; 4)

1952. Schlüteria fascicularia SOSHKINA: 100, pl. 40: 140.

Material. — Five fragments of coralla, 7 thin sections. Dimensions (in mm):

	L	Dc	sI
UAM TcI/7	15	9	24

Description. — Corallum dendroid, offsetting laterally. Corallites possess cup-shaped calices with protuberant floors and rounded calicular edges. The major septa are dilated and knobbed in the dissepimentarium, thread-like thin in the tabularium, nearly reaching the axis. Their peripheral ends penetrate the 0.2 mm thick external wall. The minor septa do not enter the tabularium. In longitudinal section there is only one row of peneckielloid, locally horseshoe dissepiments. Tabulae are mostly complete, undulate; they are spaced of about 8 in 5 mm. Trabeculae 0.2 mm thick, in the septo-cyathotheca somewhat wider, alternated, arranged in fans of the rhipidacanthine type.

Blastogeny. — Offsets arise in the region between the 2 rings of stereozones. They either deviate laterally with a large angle, or grow parallel to the parent corallite. In the last case the parent corallite loses its outer stereozone and the offset produces its own new stereozone.

Remarks. — The described specimens differ from the type-specimen only in their larger septal index (n/d) that equals 22/8 in the Chojnice specimen, versus 17/12 in the type specimen.

Peneckiella szulczewskii sp. n.

(pl. 2: 2a-e)

Holotype: UAM No. TcI/6; pl. 2: 2a-e.

Type horizon: Polygnathus asymmetricus Zone.

Type locality: Józefka Hill near Górno, Holy Cross Mts.

Derivation of the name: in honour of Dr. MICHAŁ SZULCZEWSKI, University of Warsaw.

Diagnosis. — Laterally offsetting *Peneckiella* with n/d ratio 18-20/7-9; peneckielloid dissepiments dominant, but horseshoe and sigmoidal ones also present; tabularium irregular; septa carinated.

Material. — Two fragments of a well preserved corallum $(5 \times 6 \times 7 \text{ cm and } 7 \times 4 \times 2 \text{ cm})$ and 11 thin sections.

Dimensions (in mm):

			L		Dc	SI
UAM	Tc I/b	22,	27,	30	7-9	18-20

Description. — Corallites irregularly bent, rounded or elliptical in sections, possessing calices cup-shaped and slightly flattened at the margins. Sharp external ends of septa deeply penetrate the 0.4 mm thick external wall. The distinctly thickened dissepimental parts of major septa bear yardarm or zigzag carinae, while their long, tabular parts, which almost reach the corallite axis, are smooth, thin and slightly wavy. The minor septa are less distinctly carinated and thinner than the major ones. Most of them penetrate the tabularium. The dissepimentarium contains 1-3 rows of peneckielloid, horseshoe, sigmoidal and regular, globose dissepiments (pl. 2: 2c, e). The comparatively wide tabularium is composed of obliquely downwards inclined periaxial tabellae and of narrow, convex, globose axial tabellae. Offsetting of the tham-

nophylloid lateral type, characteristic for the genus *Peneckiella*, has been described by Róż-KOWSKA (1960: 30).

Fine structure. — The trabecular centres either produce laterally elongated fibres, which form yardarm carinae, or they are arranged alternately, causing zigzagged septa with xyloid carinae. The asymmetric rhipidacanthine trabecular fans are composed of 0.2-0.3 mm thick trabeculae.

Individual variation. — The species described shows a considerable intra- and intercolony variation: (a) in septal dilation starting from the septa spindle-shaped in the dissepimentarium through all gradations down to an unthickened and not carinated septa at the end; (b) in tabularium changes that may be broad and domed or narrow and convex with many types of incomplete tabulae, and (c) in the dissepimentarium thickness and its composition of various dissepiments.

Remarks. — *P. szulczewskii* sp. n. is most similar to *P. salternensis* SCRUTTON (1968). The last species differs in having flat and domed, very regularly spaced tabulae, small diameter of corallites (maximum 6.3 mm), short major septa and different n/d ratio.

Subfamily Marisastrinae Różkowska, 1965 Genus Haplothecia FRECH, 1885 Haplothecia aff. filata (SCHLOTHEIM, 1820)

(pl. 2: 5a, b)

Material. — One fragmentary corallum; 1 thin section. Dimensions (in mm):

Dc sI UAM TcI/5 8-11 15-18

Description. — The corallum is strongly damaged and fragmentary. The calices are slightly deepened with a boss. The epithecal walls are straight or deflexed or locally lacking. Septa of 2 orders in the lumen are nearly equal in length and width, strongly carinated, with crossbar carinae that are irregular near the periphery and disappearing in the tabularium. Between the septa there are 6-8 rows of small axially convex dissepiments in cross section. In the vertical section trabecular fans of the rhipidacanthine type are present (according to PEDDER 1969).

Remarks. — SCRUTTON (1967: 271) based his description on FRECH's lectotype from Grund in the Harz Mts. SOSHKINA (1951, 1952) described under the same specific name some specimens from the Frasnian in the Ural Mts., which SCRUTTON (*l. c.*) regarded as congeneric, but non conspecific with Frech's type specimen. The specific identification of the Polish specimen is also doubtful, due to its bad preservation and somewhat greater n/d ratio (15-18/8-11 against 12-15/7-8 in the Harz Mts).

> Genus Ceratophyllum GÜRICH, 1896 Ceratophyllum kielcense sp. n.

> > (pl. 3: 7-9; 10a, b)

Holotype: UAM No. TcI/9; pl. 3: 10a, b.

Type horizon: Lower or Middle Frasnian, Polygnathus asymmetricus Zone, F2a-h.

Type locality: Kielce, Wietrznia quarry, Holy Cross Mts.

Derivation of the name: found in Kielce.

Diagnosis. — Subcylindrical corallite with long, spindle-shaped, trabecular nodules bearing

septa; dissepimentarium arched, distinctly separated from the convex tabularium; asymmetric fans of rhipidacanthine trabeculae.

Material. — Beside the holotype there are 8 fragmentary specimens. Dimensions (in mm):

Description. — Corallites are round in section with 0.2-0.3 mm thick external walls, deeply penetrated by septal ends (pl. 3: 10b). Septa spindle-shaped in the dissepimentarium, slowly thinning in the tabularium. The dissepiments, horizontal and globose near the periphery, become small and steeply inclined near the tabularium (pl. 3: 7, 10a). Tabularium domed, tabulae incomplete, 12-15 in 5 mm.

Fine structure. — The rhipidacanthine trabeculae are arranged in broad asymmetric fans, densely packed and steeply inclined axially. The alternately arranged trabeculae form knobs on the lateral surfaces of the dilated parts of septa.

Remarks. — The above described specimens may in fact belong to two species. The material is too fragmentary to separate them, however.

Ceratophyllum heterophylloides (FRECH, 1885)

(pl. 3: 11a, b; fig. 3)

1885. Cyathophyllum heterophylloides FRECH; FRECH: 30, pl. 1: 2a-e.

1896. Cyathophyllum heterophylloides FRECH; GÜRICH: 158, pl. 2: 7.

1966. Charactophyllum heterophylloides (FRECH); GUNIA: 303, pl. 2: 6-7.

Material. — From 2 transversely and longitudinally sectioned specimens, only thin sections are preserved.

Dimensions (in mm):

Fig. 3

Ceratophyllum heterophylloides (FRECH) a — longitudinal section, $\times 3$; b — septal structure in the dissepimentarium in cross section, $\times 3$; (UAM TcI/13a), Wietrznia 13.

Supplementary description. — Corallites are short, subcylindrical; one of them (fig. 11a) is slightly curved. They possess calicular edges flattened and floors of calices broad, slightly convex. The septa are spindle-shaped in the dissepimentarium, slowly thinning in the tabularium. Their peripheral ends are irregularly knobbed. The minor septa are somewhat shorter and thinner than the major ones. The dissepimentarium is broad and convex. The dissepiments are horizontal and globose near the periphery, becoming small and inclined steeply downwards near the tabularium. Tabulae are convex and incomplete. Trabeculae, arranged in asymmetric fans are axially steeply inclined.

Remarks — GÜRICH (1896) and GUNIA (1966) gave only illustrations of horizontal sections and very laconic descriptions of this species. FRECH's (1885) description is more comprehensive. He described flat marginal disseptments, which he did not illustrate, however, and which do not exist in the Polish specimens.

Genus Trigonella gen. n.

Type species: T. sandaliformis sp. n. monotypic. *Derivation of the name:* after the triangular shape of the corallite.

Occurrence. — Bolechowice syncline, Jaźwica quarry, Upper Frasnian, Palmatolepis gigas Zone.

Diagnosis. — (?) Marisastrid corallite with *Calceola* shape; major septa long, spindleshaped in the dissepimentarium, thin in the tabularium; minor septa contratingent; cardinal septum short, thick; cardinal fossula triangular, open; counter septum elongated; dissepimentarium everted; tabularium broad, concave; fine structure of septa trabecular with fanshaped trabeculae of the rhipidacanthine (?) type.

Remarks. — The peripheral sharp ends of septa resemble those in *Pterorrhiza* EHREN-BERG, but lack of horseshoe dissepiments clearly distinguishes these two genera. The new genus is also similar to *Ceratophyllum* GÜRICH in its everted dissepimentarium and broad tabularium, but differs in having septal costae and a triangular shape.

Trigonella sandaliformis sp. n.

(pl. 2: 6a-c; fig. 4)

Holotype: UAM No. TcI/13; pl. 2: 6a-c; fig. 4. Type horizon: Palmatolepis gigas Zone. Type locality: Bolechowice syncline, Jaźwica quarry, Holy Cross Mts. Derivation of the name: after sandal-like shape.

Diagnosis. — As for the genus Trigonella.

Fig. 4

Trigonella sandaliformis sp. n. a — transverse section, b — longitudinal section ×2, Holotype (UAM TcI/14), Kowala II.

Material. — One well preserved specimen. Dimensions (in mm):

	L	Dc	sI
the holotype	35	27 × 22	36

Description. — Specimen silicified in its external part, with destroyed epitheca and exposed distinct septal costae. Arrangement of the protosepta and the symmetry of the corallite depends of its shape. The counter septum is located at the flattened side of the corallite, the cardinal septum in the corner opposite to that flattening, and the alars in the other two corners. Number

of septa is equal in all quadrants (septal formula $\frac{8|8}{8|8}$ +4); they are distinctly thickened in the dissepimentarium, and thin, irregularly wavy in the tabularium. The majority of septa extends close to the corallite axis; the minor septa are similar in shape and reach approximately 1/2-1/3 of the length of the major ones. Dissepiments mainly pseudoherringbone, regular, axially concave. Lateral-cystose dissepiments locally developed. In the longitudinal section the small globose dissepiments are arranged in hemispherical rows, and form an everted dissepimentarium. The tabularium is not clearly distinguished from the dissepimentarium, as its outer part is composed of dissepiment-like globose tabellae, which differ from the dissepiments in being slightly larger in size. These globose tabellae are replaced in the axial part of the corallite by plate-like, flat, or slightly concave, axial tabellae.

Fine structure. — Poorly preserved. Judging from the everted dissepimentarium, the trabeculae were most probably arranged in fans. It cannot be maintained, however, that the trabeculae were of the rhipidacanthine type; therefore the assignment of the discussed genus and species to the subfamily Marisastrinae is not certain.

Genus Debnikiella gen. n.

Type species: D. formosa sp. n; genus monotypic. Derivation of the name: after Debnik village near Cracow.

Diagnosis. — Large solitary corallite. Septa numerous, radially arranged with fan-shaped trabeculae of the rhipidacanthine type; dissepimentarium everted, broad, without horseshoe dissepiments; tabulae incomplete, tabularium distally concave.

Occurrence. — Dębnik near Cracow, Silesia-Cracow Upland. Upper Frasnian, stratum with *Phillipsastrea*.

Debnikiella formosa sp. n.

(pl. 3: 12; pl. 4: 16a, b; fig. 5)

Holotype: UAM No. TcI/15; pl. 4: 16a, b. Type horizon: Stratum with Phillipsastrea. Type locality: Dębnik, Żarnówczany Dół, Silesia-Cracow Upland.

Derivation of the name: Lat. formosus - shapely, because of its inner regular morphology.

Diagnosis. — As for the genus.

Material. — One fragmentary corallite with well preserved inner structure; 2 thin sections, 8 peels.

Dimensions (in mm):

	L	Dc	sI
the holotype	45	29	33

Fig. 5 Debnikiella formosa sp. n. a — transverse section, b — longitudinal section ×2. Holotype (UAM TcI/15), Dębnik.

Description. — The corallite is subcylindrical with considerably well preserved internal structure; with a deep axial depression and an everted calicular edge. In transverse section sharp peripheral septal ends adhere to a narrow (0.2 mm wide) stereozone. Major septa slightly dilated in the dissepimentarium, attenuated in the tabularium, nearly reach the corallite axis; the counter septum is the longest one; the minor septa are long, contratingent, only reaching the tabularium; there are up to 22 sections of axially concave dissepiments in one septal loculum. In vertical section dissepiments are arranged in steep parabolic rows, forming an everted margin of the calice. In the peripheral row dissepiments are flat, or slightly concave. The rest of the dissepimentarium is formed of globose dissepiments, differentiated in size starting from the longest ones, located on the top of the parabola. The tabularium is divided into distinct periaxial and axial series. The periaxial zone contains densely packed concave tabulae; the axial tabellae are everted at the margin and concave in the central part. The axial zone contains many small globose and flat alternating tabellae of different size.

Fine structure. — Trabeculae of the rhipidacanthine type are arranged in fans up to 5-8 mm in height. Individual trabeculae are of 0.2-0.4 mm in thickness, and are placed in a space of 0.1-0.4 mm apart.

Remarks. — The fragmentary corallite, illustrated on pl. 3: 12 is perhaps a *Debnikiella* sp. Unfortunately only this thin cross section is preserved. *Gurievskiella* ZHELTONOGOVA (1961: 404) is distinguished form *Debnikiella* gen. n. in not having rhipidacanthine trabeculae (HILL and JELL 1970: 55).

Family **Disphyllidae** HILL, 1949 Genus Aristophyllum BULVANKER, SPASSKY, KRAVTSOV, 1975 Aristophyllum angustum (GÜRICH, 1896)

(pl. 4: 1a, b, 2; fig. 6)

1896. Ceratophyllum angustum GüRICH: 166, pl. 4: 2a-c.

Material. — Four fragmentary specimens, 3 thin sections, 7 peels. Dimensions (in mm):

	Dc	sI	d:t:d
UAM Tc. I/19	13	28	2.5:8:2.5

Supplementary description. — Subcylindrical corallites, rounded in cross section, have a broad (2-2.5 mm wide) septo-stereozone with minor septa entirely hidden in it; major septa are shortened, in the tabularium thin and irregularly bent. Dissepimentarium rarely appearing. Tabularium is domed, with incomplete tabulae.

Fig. 6

Aristop hyllum angustum (GÜRICH). a — longitudinal section, b — transverse section, ×2. (UAM TcI/19), Kadzielnia 7.

Fine structure. — The 0.3 mm thick monacanths are pinnately fibrous, directed obliquely inwards and upwards at a low angle to the horizontal.

Variation. — The individual variation is not great. The present author observed it in the length of the major septa and the width of the septo-stereozone.

Remarks. — The Niesiołowice specimen (pl. 4: 2) is in its cross section very similar to GÜRICH'S (1896, pl. 4: 2c) illustration.

Aristophyllum irenae sp. n.

(pl. 3: 1-6)

Holotype: IG-1429. II. 6; pl. 3: 3a, b.

Type horizon: Lower or Middle Frasnian, *P. asymmetricus* Zone. *Type locality*: Borehole Bąkowa IG-1, depth 1931 m, Lublin region. *Derivation of the name*: after the female name Irena.

Diagnosis. — Parricidally offsetting corallites with a narrow, not always continuous stereozone; peripheral septal ends spindleshaped; minor septa locally pierce the inner stereotheca; tabulae incomplete flat-concave; disseptiments rounded, small.

Material. — Five fragmentary specimens, 4 thin sections, 8 peels. Dimensions (in mm):

	L	Dc	sI
IG-1429. II. 6 the holotype	18	20	28

Description. — The holotype has in its cross section a 1-2 mm wide septo-stereotheca. In the vertical section small rounded disseptments are hidden nearly entirely in it. The width ratio of d:t:d = 2:14:2. Tabulae are incomplete, plate-like and vesiculose.

Fine structure. — Trabecular centres are densely set, forming a nearly continuous dark line with fibres locally 0.5 mm long, axially concave. In the vertical section the monacants are nearly horizonatal, and the lateral septal margins are denticulated.

Ontogeny. — The particidal offsets in the holotype exhibit various stages of development (pl. 3: 3b). 1) The first offset being on the hystero-neanic stage is elliptical in shape and measures 3 mm in the longer diameter. It possesses two order septa, totally embedded in stereozone. In the late neanic stage with n/d ratio = 16:6 the offset becomes rounded, and the major septa enter the tabularium. 3) In the early ephebic stage with n/d ratio = 22:17 the offset possesses 8 major septa in common with the parent corallite. The minor septa slightly penetrate the inner stereozone.

Variation. — Individual variation is not great. It has been observed in the width of septostereozone and its discontinuity, in the structure of tabularium with broad and flat or globose tabulae.

Remarks. — The above described species differs from *A. angustum* (GÜRICH) in having larger dimensions, a discontinuous stereozone and parricidal offsets. It resembles *Temnophyllum inopinatum* HILL and JELL, 1970 in its short septa and broad tabularium, differing from the last one in being of larger size and in producing parricidal offsets.

Family Mictophyllidae HILL, 1940 Genus Mictophyllum LANG and SMITH, 1939 Mictophyllum guniae sp. n.

(fig. 7a-c)

Holotype: U. Wr. D. Sw./K. 5; fig. 7a-c. Type horizon: Middle or Upper Frasnian, stratum with Tabulophyllum priscum (MÜNSTER). Type locality: Mokrzeszów, Daisy Lake, Sudetes. Derivation of the name: In honour of Professor TADEUSZ GUNIA, University of Wrocław.

Diagnosis. — Small corallites with long, thin, irregularly bent major septa; cardinal septum shortened, lying in a broad "fossula"; minor septa depressed, replaced by 6-8 rows of angulate dissepiments; tabularium broad, tabulae horizontal; dissepiments long, locally lonsdaleoid.

Material. — Four specimens, 6 peels. Dimensions (in mm):

	L	đc	sI
U. Wr. D. Sw. K5	36	12	25

Description. — Corallites are subcylindrical, slightly bent. Calices are shallow with a horizontal floor. The external walls are thin, penetrated by triangular peripheral septal ends to form a septo-stereozone. Septa are locally separated from the wall by lonsdaleoid dissepiments. Major septa do not reach corallite axis. Minor septa are shortened, locally restricted to the

Fig. 7 Mictophyllum guniae sp. n. a — longitudinal section, b — early ephebic stage, c — ephebic stage, $\times 3.3$, Holotype (U. Wr. D. Sw. K5), Mokrzeszów.

stereozone. The zone of angulte dissepiments is of various width and it is broader at the convex side of the corallite. Tabulae are incomplete, horizontal with accessory plates. The width ratio of dissepimentarium and tabularium d:t:d=2:10:1. The monacanths are subhorizontal, disphylloid, of 0.2-0.3 mm in width.

Remarks. — Hill (1940) introduced the family Mictophyllidae with the type genus *Mictophyllum* LANG and SMITH, 1939. PEDDER (1972:700) found the following characters distinguishing it from *Temnophyllum*: peripherally attenuate septa, fine unflexed trabeculae of the disphylloid type, and commonly elongated dissepiments. Some of SMITH's (1954: 30) species described as appertaining to *Mictophyllum* belong according to PEDDER (*l. c.*) to *Temnophyllum*.

Family Charactophyllidae PEDDER, 1972

Remarks. — PEDDER (1972: 698) included to this family the following genera discussed in the present paper: *Temnophyllum* WALTHER, *Charactophyllum* SIMPSON, *Alaiophyllum* GO-RIANOV. According to the present author's opinion, *Piceaphyllum* gen. n. is also a member of this family. The characteristic features of the charactophyllids are (PEDDER, *l. c.*): charactophylloid trabeculae, septa commonly dilated, dissepimentarium not distinctly separated from the tabularium and well inflated dissepiments.

> Genus Charactophyllum SIMPSON, 1900 Charactophyllum lotzei ALTEVOGT, 1963 (pl. 4: 3a, b; 4; fig. 8)

1963. Charactophyllum lotzei Altevogt: 17, pl. 1: 2a-c.

Material. — Three silicified specimens and 5 thin sections. Dimensions (in mm):

	L	Dc	sI	sI : sII
U. Wr. D. Sw./K: 3	17	14	30	3:1

Description. — Major septa dilated and knobby in the dissepimentarium, thin and twisted in the tabularium, nearly reaching the corallite axis. Dissepiments are globose at the periphery,

Fig. 8

Charactophyllum lotzei Altevogt. a — transverse section, b — longitudinal section, $\times 5$, (U. Wr. D. Sw./K3), Witoszów 7 and 10.

elongated and axially inclined near the tabularium. Tabulae incomplete, densely arranged, convex. Charactophylloid trabeculae, 0.3-0.5 mm in width, are in lateral contact. In one corallite (pl. 4: 4) the minor septa terminate in the thickened internal wall.

Remarks. — The described specimens resemble those from the Lower Frasnian of Asturia in its subcylindrical shape, small diameter and the irregular structure of the convex tabularium. ALTEVOGT (1963: 18) also reported an existence of inner stereoplasmatic ring in a cross section of the corallite. The described specimens differ from the photograph of the topotype of *C. nanum* SIMPSON from Iowa, sent to me by Dr. J. E. SORAUF, in having strong carinae and not distinctly separated tabularium with plate-like axial tabellae.

Genus Alaiophyllum GORIANOV, 1961

Remarks. — GORIANOV (1961) located that genus in the family Phillipsastraeidae ROEMER; PEDDER (1973: 96) in the family Cyathophyllidae DANA *(sensu lato)*, but he ascertained charactophylloid trabeculae in *Alaiophyllum*. On this basis the present author assigned it to the Charactophyllidae.

Alaiophyllum jarushevskyi GORIANOV, 1961

(pl. 4: 5a, b; fig. 9)

1961. Alaiophyllum jarushevskyi GORIANOV: 71, pl. 8. 1-3. 1973. Alaiophyllum jarushevskyi GORIANOV; PEDDER: 96, pl. 11: 1, 3, 5, 6; figs 32-33.

Material. — One incomplete specimen, 2 thin sections.

Dimensions (in mm):

L dc sI UAM TcI/27 20 20×17 32

Description. — The septa are wedge-shaped with rounded peripheral and sharp axial ends. Dissepiments are elongated, flattened, axially inclined, and hidden in a broad stereozone. The tabulae are mainly complete, highly domed with accessory plates. The monacanths are

Fig. 9 Alaiophyllum jarushevskyi GORIANOV. a — transverse section, b — longitudinal section, $\times 2$, (UAM TcI/27), Kadzielnia 9.

thick (0.3-0.4 mm), subhorizontal, inclined with an angle of $10-20^{\circ}$ to the horizontal. In cross section of the thickened septa they appear in 2 alternate rows. The fibres are long, and deviate by a large angle from the trabecular centres.

Remarks. — The Polish specimen resembles the type specimen in the length ratio of major and minor septa, in the septal index n/d, but differs in having highly domed tabulae. In spite of that V. B. GORIANOV (personal comm. 1976) expressed the opinion that both specimens are conspecific.

Genus Temnophyllum WALTHER, 1928 Temnophyllum isetense (SOSHKINA, 1951)

(pls. 4: 7-15; 5: 1)

1951. Neostringophyllum iseténse SOSHKINA: 53, pl. 7:1; pl. 8: 1-5. 1968. Neostringophyllum isetense SOSHKINA; GUNIA: 150, pl. 4: 13; non pl. 5: 1, 2.

Material. — Twenty seven fragmentary specimens, 32 thin sections, 18 peels. Dimensions (in mm):

Dc sI sI:sII UAM TcI/26 17 31 10:6

Diagnosis. — See Soshkina 1951: 53.

Description. — Incomplete specimens of this species are common in the Lower and Middle Frasnian bioherms in the Holy Cross Mts. According to SOSHKINA (1951, pl. 8: 4b) the species is characterized by charactophylloid trabeculae. The Polish specimens, known mainly in cross sections, have similarly long twisted major septa, partly reaching corallite axis, with peripheral ends dilated. Similarly, as in SOSHKINA's (1951, pl. 7: 1a) illustration, the major septa near the boundary of the tabularium are bent and meet the long minor septa (pl. 4: 11). The longitudinal sections, badly preserved (pl. 4: 7a, 9) show the broad dissepimentarium and the broad horizontal or slightly convex tabularium with numerous small vesiculous tabellae. The charactophylloid trabeculae, 0.4 mm in width with long fibres, cause distinct trabecular knobs on lateral surfaces of septa (pl. 4: 14).

The ontogenetically youngest corallite (pl. 5: 1) has been found at Kadzielnia (point 9 of Różkowska, 1953). It possesses n/d ratio = 22: 8 and long major septa, some of which reach the corallite axis. The counter septum, lying in an open fossula, is the longest septum of all. This is in agreement with PEDDER's (1972: 692) observation. Minor septa form only small spines on a broad peripheral stereozone.

Variation. — According to SOSHKINA (1951: 55) the intraspecific variability is immense. The present author observed it on cross sections in the length and thickness of septa, in positions of trabeculae, forming sometimes broad knobs and in distintegration of peripheral septal ends (pl. 4: 15). Most variable is the tabularium, as observed on vertical sections. It is broad, vesiculous in specimens from Kadzielnia (pl. 4: 7*a*) and plate-like, horizontal in those from Witoszów (pl. 4: 13).

Temnophyllum elongatum sp. n.

(pl. 4: 6a, b)

Holotype: UAM No. TcI/28; pl. 4: 6a, b. Type horizon: Lower or Middle Frasnian. Type locality: Sobiekurów, Holy Cross Mts. Derivation of the name: Lat. longus — long, after its elongated, cylindrical shape.

Diagnosis. — Major septa long, thin, reaching the corallite axis, only fainly dilated in the dissepimentarium; minor septa long, contratingent, entering the tabularium; dissepiments globose; tabularium broad horizontal, tabulae incomplete, plate-like.

Material. — One specimen.

Dimensions (in mm):

	L	Dc	sI	sI :sII
The holotype	30	16	28	6:4

Description. — All septa are arranged bilaterally, straight and only slightly dilated in the dissepimentarium. The most elongated counter septum forms a triade with two adhering long minor septa. Nearly all major septa reach the axis. Minor septa thinner and shorter than the major ones, are contratingent. In the loculi between septa there are sections of 5-6 rows of axially concave dissepiments. In the vertical section there is a narrow dissepimentarium built up of globose, axially inclined dissepiments. Tabularium is broad horizontally with blister-like periaxial tabellae, differing from the dissepiments only in their larger size. Axial tabellae are plate-like, locally united into systems.

Remarks. — The above described species resembles T. *isetense* (SOSHKINA) in its cross section exibiting long septa, reaching the corallite axis and the contratingent minor septa. It differs from the latter in having very thin septa and a broad tabularium with plate-like axial tabellae.

Temnophyllum turbinatum HILL, 1954

(pl. 5: 12-15)

1954. Temnophyllum turbinatum HILL; HILL: 23, pl. 2: 13, 14.

1970. Temnophyllum turbinatum HILL; HILL and JELL: 57, pl. 16: 12-14.

Material. — Fifty badly preserved specimens, 8 thin sections, 28 peels. Dimensions (in mm):

L dc sI IG-1429. II. 13 40 18 30

Ontogeny observed in the species discussed:

(1) Neanic stage with n/d = 15/3, all major septa are shortened, the counter septum is the longest one.

(2) Late neanic stage with n/d ratio = 22/6, major septa shortened, minor septa embedded in the peripheral stereozone.

(3) Early ephebic stage with n/d ratio = 26/10. Minor septa enter the corallite lumen, major septa are long, but not reaching the axis. Counter septum is as long as the neighbouring septa.

Remarks. — This species is common in the Lublin region, especially in the Bąkowa IG-1 borehole, where it is locally rockforming. It resembles the Australian species in having major septa spindle shaped, withdrawn from the axis and locally in contact; minor septa entering the tabularium; dissepimentarium with globose dissepiments; tabularium broad, with horizontal tabulae and sporadically appearing angulate dissepiments; they appear only when minor septa become shortened. The Polish specimens differ from the Australian ones in having a subcylindrical shape.

Temnophyllum menyouense HILL and JELL, 1970

(pl. 5: 2-4; fig. 10)

1970. Temnophyllum menyouense HILL and JELL: 60, pl. 15: 13, 14-16.

Material. — Six well preserved specimens, 20 thin sections, 2 peels.

Dimensions (in mm):

Description. — Subcylindrical corallites; one of them with a parricidal offset (pl. 5: 3). Septa are wedge-shaped; major ones withdrawn from the axis; minor septa are half as long as the major ones or shortened and replaced by angulate dissepiments. In the longitudinal section the dissepimentarium is broad with globose dissepiments, and the tabularium consists of concave, sagging tabulae.

Fig. 10 Temnophyllum menyouense Hill and Jell. a — transverse section, b — longitudinal section, $\times 2$, (UAM TcI/30), Kadzielnia 9.

Fine structure. — The monacanths (0.3-0.4 mm in width) are nearly horizontal at the periphery, but directed inwards and upwards distally. At the periphery they are adversely set, causing knobs on the lateral sides of septa.

Temnophyllum verum sp. n.

(pl. 5: 7a, b)

Holotype: UAM No. TcI/29; pl. 5: 7a, b.

Type horizon: Lower or Middle Frasnian, P. asymmetricus Zone.

Type locality: Kielce, Kadzielnia quarry, Holy Cross Mts.

Derivation of the name: Lat. verum - certain, that means, a typical Temnophyllum species.

Diagnosis. — Subcylindrical corallite with long major septa, nearly reaching the corallite axis; minor septa long, contratingent; broad dissepimentarium, not distinctly separated from the tabularium, which is narrow, axially depressed; trabeculae charactophylloid.

Material. — One well preserved specimen with two thin sections, and one fragmentary specimen with 3 thin sections and 3 peels.

Dimensions (in mm):

	L	Dc	sI	sI : sII
UAM TcI/29	32	13	28	6:4

Description. — The outer stereozone reaches 0.5 mm in width and the inner one is only 0.1 mm thick. Septa triangular in the outer stereozone, dilated in the inner one, are otherwise 3 — Palaeontologia Polonica No. 40 threadlike thin. The major septa are long and twisted; the longest is the counter septum, forming a triade with 2 neighbouring long minor septa (infralateral septa of HUDSON 1936: 71). In the longitudinal section 6-8 series of globose, steeply axially inclined dissepiments occur. Periaxial tabellae are arranged in 2-3 series. Short axial tabellae form a deep depression. The charactophylloid trabeculae (0.1-0.3 mm in width) are in lateral contact.

Remarks. — The above described species resembles most closely T. menyouense HILL and JELL (1970) in its longitudinal section. It differs in having long major and minor septa, and in not possessing angulate dissepiments.

Temnophyllum miniarense (SOSHKINA, 1939)

(pl. 5: 5, 6)

1939. Pseudostringophyllum miniarense SOSHKINA: 38, pl. 10: 85, 86. 1952. Aulacophyllum miniarense (SOSHKINA): 69, fig. 99.

Material. — One thin section and 4 peels made from 2 fragmentary specimens. Dimensions (in mm):

Dc sI UAM TcI/33 16 28

Description. — The corallites are characterized by irregular dilations of septa and by irregular stereoplasmatic rings, deposited on septa and dissepiments. The major septa in the tabularium are thin, and do not reach the corallite axis. The length ratio of major and minor septa = 6/2. The minor septa are longer, however, where the interior ring of stereozone is lacking. The monacanths are densely set, forming a single, nearly continuous dark line with pinnately arranged fibres, elongated where the septa dilate.

Remarks. — The specific identification is doubtful, as no vertical section of the Polish specimen is prepared. Besides that, SOSHKINA's (1939: 39) specimens are smaller (n/d = 24/8-11) and have long major septa. SOSHKINA (*l. c.*) joined her species with *Pseudostringophyllum* or *Aulacophyllum*. According to PEDDER (1972: 700) it belongs to *Temnophyllum*.

Genus Piceaphyllum gen. n.

Type species: Neostringophyllum pronini Soshkina, 1951.

Derivation of the name: Lat. Picea - spruce, because the peripheral septal ends resemble the twig of a spruce.

Diagnosis. — Subcylindrical corallites having peripheral ends of septa radially split, forming retrosplits; minor septa locally reduced to short ridges, replaced by angulate dissepiments; tabulae horizontal; trabeculae charactophylloid.

Remarks. — The new genus is related to *Temnophyllum*, in having trabeculae charactophylloid and disintegrated peripheral septal ends; this trend had already started in *Temnophyllum isetense* (SOSHKINA), but without reaching the stage of radial retrosplits in the peripheral septal ends.

Species assigned: Neostringophyllum pronini SOSHKINA, 1951, Piceaphyllum breviseptum sp. n.

Occurrence. - Poland: Holy Cross Mts., Sudetes; USSR: Ural Mts.; Frasnian.

Piceaphyllum pronini (SOSHKINA, 1951)

(pl. 5: 8a, b, 9; fig. 11)

1951. Neostringophyllum pronini SOSHKINA: 61, pl. 10; figs 26, 27.

1952. Neostringophyllum pronini SOSHKINA: 89, p. 26: 89.

1968. Neostringophyllum isetense SOSHKINA; GUNIA: 150, pl. 4: 13 pl. 5: 1, 2.

Material. — Four fragmentary specimens, 5 thin sections, 4 peels. Dimensions (in mm):

	dc	sI	sI : sII
U. Wr. D. Sw./K 7	18	36	8:3

Description. — Polish specimens resemble the type specimen in their septal morphology. Major septa are long, but not reaching the corallite axis. They are dilated in the dissepimentarium, but thin and twisted in the tabularium. The minor septa are short and absolete. The dense tissue between the septa in the dissepimentarium is composed of radial retrosplits of

Fig. 11 *Piceaphyllum pronini* (SOSHKINA). a — transverse section of the nearly ephebic stage $\times 5$, (U. Wr. D. Sw./K7), Witoszów 10.

septa and of angulate dissepiments. The trabeculae in the thickened part of septa are alternately set, 0.3-0.4 mm in width, versus 0.2 mm of, those in the thin parts.

Ontogeny. — The corallite (fig. 11*a*) with n/d ratio = $22:6\times8$ has a broad external stereozone. The minor septa do not enter the corallite/lumen. The major septa are long and rotated around the corallite axis, and have characteristic retrosplits.

Piceaphyllum breviseptum sp. n.

(fig. 12)

Holotype: UAM TcI/37; fig. 12. Type horizon: Polygnathus asymmetricus Zone. Lower or Middle Frasnian. Type locality: Kowala I, railroad-cut, Holy Cross Mts. Derivation of the name: Lat. breviseptum — shortened septa.

Diagnosis. — *Piceaphyllum* with short major septa and obsolete minor ones; dissepimentarium narrow; tabularium broad, horizontal.

Material. — Two fragmentary specimens, 4 peels. Dimensions (in mm):

Description. — The subcylindrical corallite is surrounded by a narrow septostereotheca. Major septa are straight and gradually thinning towards the corallite axis, reaching approximately 1/3 of the corallite radius. The minor septa are reduced to short knobs. The peripheral radial retrosplits are distinct. The dissepimentarium with angulate dissepiments in the cross section exhibits fine and globose ones in the longitudinal section. Tabulae incomplete, horizontal, with accessory plates. **Ontogeny.** — On the stage with the septal ratio n/d = 10/3.5 and 16/4 all major septa are long, and minor septa are obsolete (fig. 12*a*, *b*). Later on with n/d ratio = 18/5 major septa become shortened, and minor septa crests.

Remarks. — The species described above differs from P. pronini (SOSHKINA) in having short, straight major septa in the ephebic stage. The very similar neanic stage of both the species discussed forms a basis for the generic assignment of the new species.

Fig. 12

Piceaphyllum breviseptum sp. n.: a-c, f, d — successive cross sections of a corallite; e — longitudinal section; a-e $\times 5$, f $\times 3$: a — neanic, b, c — early ephebic stage, d, f — ephebic stage; Holotype (UAM TcI/37), Kowala I.

Family uncertain Genus Fedorowskicyathus gen. n.

Type species: F. similis sp. n., monotypic. Derivation of the name: in honour of Dr JERZY FEDOROWSKI, University of Poznań.

Diagnosis. — Solitary corallites with two orders of septa in the lumen; major septa twisted, commonly reaching the corallite axis; minor septa enter the tabularium; dissepiments elongated, flattened, axially inclined; tabularium domed, tabulae arranged in systems.

Occurrence. -- Holy Cross Mts., Poland; Palmatolepis gigas Zone.

Fedorowskicyathus similis sp. n.

(pls 5: 10, 11; 6: 1-5)

Holotype: UAM TcI/38; pl. 6: 2a, b.

Type horizon: Palmatolepis gigas Zone.

Type locality: Kowala II, road-cut, Holy Cross Mts.

Derivation of the name: Lat. similis — resembling. Resembling Tabulophyllum FENTON and FENTON, and Temnophyllum WALTHER.

Diagnosis. — As for the genus. **Material.** — Twenty silicified specimens, 6 thin sections, 5 peels. Dimensions (in mm):

	L	cd	sI	sI :sII
UAM TcI/38	25	28	36	
UAM TcI/41	10	14	31	8:4

Description. — Corals gathered in Kowala II are almost completely silicified, while those coming from Jaźwica quarry, have only a narrow peripheral zone silicified. All specimens

have the proximal ends destroyed. The corallites are straight or conical and curved. The calice is cup-shaped, approximately 10 mm deep with sharp edges, steep internal wall, and broad vortex bearing floor. Major septa with dilated peripheral ends are attenuated and coiled in the tabularium. Minor septa are short and thin. Longitudinal section: long and flattened dissepiments are arranged in 2-6 rows. Tabulae are highly domed with many accessory plates, and are arranged in systems. They bend downwards near the boundary of the tabularium.

Variation. — The strong individual variability is manifested in the length of septa and in the structure of tabularium, which may be convex or concave in axial part of a corallite.

Remarks. — The specimens described resembles *Temnophyllum isetense* (SOSHKINA) in the shape of septa, dilated at the periphery and twisted in the corallite axis. They also come close to *Tabulophyllum densum* sp. n. in having dense, highly domed tabularium with tabulae united in systems. However, the corallites have no lonsdaleoid dissepiments, characteristic for *Tabulophyllum*. In contrast to *Temnophyllum*, they possess a dissepimentarium distinctly separated from a tabularium and elongated, flattened dissepiments. The fine septal structure of *F. similis* sp. n. is not known.

Family Chonophyllidae Holmes, 1887 Genus Chonophyllum Milne-Edwards and Haime, 1850

Type species: C. perfoliatum MILNE-EDWARDS and HAIME, 1850.

Remarks. — For a long time there was a great confusion in the assignment of species to the genus *Chonophyllum*, as two earlier described species of various morphology *C. perfoliatum* EDW.-H. and *C. patellatum* SCHLOTHEIM were wrongly interpreted as congeneric. The latter has been designated by SMITH (1945) as the type species of *Schlotheimophyllum* SMITH. In Europe only one species of *Chonophyllum*, that is *C. perfoliatum* EWD.-H., is known from the Silurian of Gotland, while in North America SHERZER (1892) described 12 species. According to OLIVER (in lit.) most or all of these species have never been sectioned; therefore their identification is controversial. Only one Upper Devonian (?) *Chonophyllum ellipticum* HALL and WHITFIELD, which has been redescribed by FENTON and FENTON (1924: 29) from Hackberry stage, was recorded by OLIVER (*l. c.*) as probably chonophyllid.

In the Frasnian deposits of Kielce, the present author has found a fragmentary (?) Chonophyllum with morphology characteristic for that genus. She placed it in Chonophyllum with the question mark. Polish Frasnian species may be a homeomorph of Chonophyllum, separated from that Silurian genus by a long stratigraphic gap.

(?) Chonophyllum dulce sp. n.

(pl. 7: 1a, b)

Holotype: UAM TcI/43; pl. 7: 1a, b.

Type horizon: Upper Frasnian stratum with *Phillipsastrea*. Type locality: Kielce, Wietrznia quarry, Holy Cross Mts. Derivation of the name: Lat. dulce — soft; because of a rounded outline of the corallite skeleton.

Diagnosis. — Chonophylloid, solitary, turbinate, laterally compressed corallite with a broad lonsdaleoid dissepimentarium; septa naotic in a dissepimentarium, rhopaloid and deflected in a tabularium; tabulae incomplete, flat-domed; fine structure monacanthine.

Material. — One fragmentary corallite, 2 thin sections.

Dimensions (in mm):

L n/d UAM TcI/43 13 30:32×25 **Description.** — The peripheral-most, naotic septal ends are in lateral contact, forming a 0.6 mm thick septostereotheca. Their inner parts are arranged in 6-8 rows at one side of the corallite. These rows become gradually smaller axially, and are locally in contact. The lonsdaleoid dissepiments vary in length from 1 to 2 mm. Their walls are usually thin and bear short septal cones with saucer-like plates and divergent trabecular rods. The major septa, rhopaloid in the tabularium, are deflected in two directions. The cardinal and counter septa are the longest ones, nearly reaching the axis. Tabulae are incomplete, horizontal. Dissepiments are large, globose, nearly horizontal with short trabecular rods.

Fine structure. — At the periphery the naotic segments are 1.5 mm wide and 0.7 mm high. They bear 4-6 rods of 0.1 to 0.2 mm in width. The monacanths in the dilated parts of septa are arranged in two alternate series, reflected as knobs on the lateral surfaces of septa. Some septa are splitting along the line between series of monacanths.

Genus Iowaphyllum STUMM, 1949 Iowaphyllum oliveri sp. n. (pl. 6: 6-8; pl. 7: 3; fig. 13)

Holotype: UAM TcI/46; pl. 6: 6a, b; fig. 13. Type horizon: Palmatolepis gigas Zone. Type locality: Kowala II road-cut, Holy Cross Mts. Derivation of the name: in honour of Dr. WILLIAM A. OLIVER, Jr., Geological Survey, Washington.

Diagnosis. — Colonial astraeoid and aphroid *Iowaphyllum* with a few large corallites; dissepimentarium wide, lonsdaleoid; tabularium narrow; a small boss in a clice axis.

Material. — Ten fragmentary specimens, 10 thin sections, 6 peels.

Dimensions (in mm):

dc dt sI UAM TcI/46 30×40 9 44

Description. — Young corallites are cone-shaped (pl. 6: 7) with a broad everted calicular platform foliated at a periphery. An axial part of calice bears a distinct vortex. In the colonial stage specimens are tabular in shape with corallites confluent or separated by lonsdaleoid dissepiments. They have a broad calicular platforms and peripheral foliations (pl. 6: 6a-b). The long major septa are crowded in the tabularium, where they form a prominent axial boss. They are thickened in the inner dissepimentarium at the boundary of the tabularium, forming a nearly continuous ring. The cardinal septum is the longest one. It lies in a narrow, long "fossula". The thin minor septa enter slightly the tabularium.

In the vertical section there is a broad, everted dissepimentarium with dissepiments of various size elongated, flat, steeply inclined towards the corallite axis. They have walls thickened by sclerenchyme in foliated parts of corallites and bear short trabecular rods on their surfaces. Axial tabellae are highly domed, periaxial ones are concave, forming a trough near the dissepimentarium. The vortex is formed by convex tabulae and crowded septa.

Fine structure. — The septa have uni- and multiserial trabeculae of 0.4 mm in width.

Variation.— The greatest variability is manifested in a form of growth and a shape of corallum. It may be low, plate-like or elongated. Distances between centres of corallites in colonies vary from 12-20 to 30-40 mm. Peripheral ends of septa may be reduced to a different degree in particular colonies and corallites.

Remarks. — The differences in dimensions (in mm) between the Frasnian species of *Iowa-phyllum* described so far are as follows:

Number of	Distances		
major	between	dc	dt
septa	corallite		
	centres -		

I. rhenanum (SCHLÜTER)	25	7-25	7×12	1.4×4.5
Iowaphyllum sp. COEN-				
-AUBERT, 1974	25	20-25	5	4×5.5
Iowaphyllum oliveri sp. n.	24-44	12-40	32×40	6×10

Iowaphyllum oliveri sp. n. is most similar to Iowaphyllum sp. of COEN-AUBERT, 1974. It differs from the latter only in having dominantly astraeoid coralla and long, thin septa. Le-COMPTE (1970: 47) observed the influence of the environment on the shape of some Iowaphyllum specimens: they are solitary, if living in calm water, i. e. when found in interreef shales. Tabular coralla occur near a margin of a bioherme. The tabular shape of Polish specimens may indicate a marginal reef facies in Kowala.

Fig. 13

Iowaphyllum oliveri sp. n. a — transverse section, b — longitudinal section of a colony, ×2. Holotype (UAM TcI/46), Kowala II.

Genus Kowalaephyllum gen. n.

Type species: K. excelsum sp. n. Derivation of the name: after Kowala village.

Occurrence. — Holy Cross Mts., Palmatolepis gigas Zone.

Diagnosis. — Chonophylloid corallites with axial bosses, and everted calicular platforms; septa in the lonsdaleoid dissepimentarium interrupted, naotic; in the inner dissepimentarium and in tabularium lamellar, rotated around the corallite axis; dissepiments elongated, flattened; tabulae incomplete, domed; lateral surfaces foliated; monacanths uni- and multiseriate.

Remarks. — The new genus resembles *Chonophyllum* EDW.-H. with its foliations, everted dissepimentarium, lonsdaleoid marginarium and naotic septal structure. It differs in having a prominent axial boss, formed by domed tabulae and twisted septa. *Schlotheimophyllum* SMITH (1945) with its reflexed shoulder of calice, small axial pit, occupied by a boss and with its foliations, is slightly similar to the new genus Kowalaephyllum. It differs in exhibiting patellate shape, septa peripherally dilated and laterally contiguous and suppressed dissepimentarium.

Kowalaephyllum excelsum sp. n.

(pl. 7: 4a-e)

Holotype: UAM TcI/47; pl. 7: 4a-e. Type horizon: Palmatolepis gigas Zone. Type locality: Kowala II road-cut, Holy Cross Mts. Derivation of the name: Lat. excelsum — excellent corallite.

Material. — One silicified specimen. Dimensions (in mm):

> L c t sI the holotype 62 80 18 50

Diagnosis. — A densely foliated *Kowalaephyllum* with a *Naos*-shape; shoulder of calice everted and externally inclined; dissepimentarium broad, naotic; tabularium narrow with a swirl of major septa in corallite axis.

Description. — The corallite is silicified, with the distal part considerably reduced in diameter. Its everted calice has an externally inclined marginal shoulder and a narrow (10 mm wide) pit with a distinct boss. Septa are lamellar in the inner part of the corallite. Axial parts of major septa thickened and twisted, to form a boss. In the longitudinal section the broad everted dissepimentarium consists of fine elongated and flattened dissepiments. The tabularium is very narrow, convex.

Remarks. — The described species differs from K. *poculum* sp. n. by its *Naos*-like shape, its everted dissepimentarium and its externally inclined marginal shoulder of calice. It differs from K. *mirabile* sp. n. by its *Naos*-like shape and externally inclined dissepimentarium.

Kowalaephyllum poculum sp. n.

(pl. 7: 2a, b; pl. 8: 2a,-c)

Holotype: UAM Tcl/50; pl. 7: 2a, b; pl. 8: 2a. Type horizon: Palmatolepis gigas Zone. Stratum with Phillipsastrea. Type locality: Kielce, Wietrznia quarry, Holy Cross Mts. Derivation of the name: Lat. poculum — cup, because of cupshaped calice.

Diagnosis. — Subcylindrical, large corallites with rare foliations; calice broad with a sharp calicular edge; septa wedge-shaped, disrupted in the outer, naotic, lonsdaleoid dissepimentarium, lamellar in the inner one, and twisted in the tabularium; dissepiments elongated, flattened, subhorizontal; tabulae incomplete, convex.

Material. — One well preserved specimen and poorly preserved fragments of another specimen, 4 peels, 2 thin sections.

Dimensions (in mm):

1 dc dt sI UAM TcI/50 70 65 10×7 34

Description. — The subcylindrical, rarely foliated corallites have regular calicular edges and broad wedge-shaped septa that are 2 mm in width along the length of 18 mm from the periphery, and are lamellar farther on. The minor septa are almost equal in width with the major ones, but they only enter the tabularium, while the major septa are dilated and twisted

41

there. In vertical section the dissepimentarium is concave with thick-walled dissepiments, which are horizontal in the peripheral dissepimentarium and steeply inclined downwards at the tabularium boundary. Periodically parallel layers of sclerenchyme appear. The tabularium is spongy with domed tabellae and sections of twisted septa. The naotic plates are axially convex, thick-walled, with thin intermediate plates. The trabecular spines are 0.1-0.3 mm in width and are almost parallel. The lamellar parts of septa have uniseriate trabeculae with long laterally parallel fibres.

Ontogeny. — The proximal end of the holotype with n/d ratio = 24/14 is surrounded by 1.5 mm wide septo-stereozone. Septa consist of 4 rows of naotic plates and of divergent trabecular rods. They become lamellar axialwards. The major septa reach the corallite axis and twist.

Remarks. — The discussed species comes very close to K. excelsum sp. n. in generic characters, but differs from it in having an elongated subcylindrical shape, wedge-shaped septa, axially convex naotic plates, and concave middle part of the dissepimentarium in the longitudinal section. In the same piece of rock there is a fragment of another corallite (UAM TcI/49) with an irregular calicular margin.

Kowalaephyllum mirabile sp. n.

(pl. 8: 1a-e)

Holotype: UAM No. TcI/51; pl. 8: 1a-e.

Type horizon: Upper Frasnian, stratum with Phillipsastrea.

Type locality: Bolechowice, Holy Cross Mts.

Derivation of the name: Lat. mirabile - wonderful, for its strange structure.

Diagnosis. — Turbinate *Kowalaephyllum*, densely foliated, with a broad calicular shoulder and a narrow axial pit; dissepimentarium broad, horizontal; lonsdaleoid dissepiments numerous; trabeculae uni- and multiseriate.

Material. — One partly silicified specimen and 1 thin transverse section. Dimensions (in mm):

L dc sI UAM TcI/51 40 40 31

Description. — Corallite broad, conical, with silicified and weathered surface. Calice is broad, patellate with a shallow axial depression rounded by an elevated ring.

In cross section there are two seemingly different structures to be observed: one on the polished surface and the other on the thin section. On the polished surface the septa seem to be lamellar (pl. 8: 1c) along nearly whole length, and are 1.5-1.7 mm broad. Lonsdaleoid dissepiments appear only at the periphery. On the thin section taken from the same specimen (pl. 8: 1e), the lonsdaleoid dissepimentarium is broad, the septa are interrupted, with wide triangular fragments and multiseriate trabeculae seen as small dots of 0.1-0.2 mm in width. Locally the septa are thin, or only series of trabecular dots are to be seen. Naotic parts of septa consist of axially convex plates with short trabecular rods. In the inner dissepimentarium and in the tabularium (on one side of the section) the septa are lamellar, the trabeculae are multiserial, and the septal ends taper axially and twist, forming a boss. The minor septa are thin, and only enter the tabularium. In the vertical section a broad dissepimentarium consists of elongated, flattened, horizontal disseptiments that steeply bent downwards at the tabularium boundary. They have thickened walls and bear short trabecular rods. The tabularium is narrow. The width ratio of disseptimentarium and tabularium equals 16:7:20. The concave periaxial tabellae form a trough while the convex axial ones join the twisted septal ends to form a 3 mm wide vortex.

Remarks. — The discussed species differs from K. poculum sp. n. by its turbinate shape, the numerous foliations, the horizontal calicular shoulder and the structure of dissepimentarium. The polished surfaces of cross sections of both species discussed are quite similar to each other (pl. 7: 2a; pl. 8: 1c).

Genus Tabulophyllum FENTON and FENTON, 1924 Tabulophyllum densum sp. n.

(pl. 9: 10a-c)

Holotype: UAM No. TcI/52; pl. 9: 10a-c. Type horizon: Middle Frasnian, Polygnathus asymmetricus Zone. Type locality: Kielce, Wietrznia quarry, Holy Cross Mts. Derivation of the name: Lat. densus — dense, a thick structure.

Diagnosis. — Large *Tabulophyllum* with a bilateral symmetry; major septa long, twisted, minor septa short, interrupted; tabularium broad, highly domed; lonsdaleoid dissepimentarium broad.

Material. — Three fragmentary corallites, 5 thin sections. Dimensions (in mm):

L n/d d:t:d UAM TcI/52 25 48/35 8:20:10

Description. — The peripheral septo-stereozone is approximately 1.5 mm thick. Major septa are long, reaching the corallite axis, thickened in the dissepimentarium, thin and twisted in the tabularium with triangular ends, embedded in the external wall. The cardinal septum is long; large, thick-walled dissepiments occupy a peripheral part of dissepimentarium. In the longitudinal section there are 5-7 elongated, steeply inclined rows of dissepiments with periodically dilated walls. The tabulae are densely set, gathered in systems with numerous accessory plates.

Fine structure of septa is trabecular. In cross section there are 0.4 mm long divergent trabecular rods in peripheral parts of septa and, in contrast to the naotic structure, there are no horizontal septal plates. In the dilated parts of septa the monacanths are placed in 1-3 series, causing an irregular bending and locally a radial splitting of septa. In the vertical section the peripheral dilated septa are composed of 0.4-0.5 mm wide subhorizontal trabeculae, that contact laterally, or are joined by a lamellar sclerenchyme.

Ontogeny. — In the neanic stage (pl. 9: 10*a*) with a diameter of 18 mm the minor septa are embedded in 1 mm thick septo-stereozone. The major septa are shortened, wedge-shaped.

Remarks. — The new species resembles *T. mcconnelli* (WHITEAVES) in its bilateral symmetry and large lonsdaleoid dissepiments; it differs from that species by strongly dilated skeletal elements, twisted major septa, highly domed tabularium, and very short minor septa.

Tabulophyllum priscum (MÜNSTER, 1841)

(pl. 9: 1-3)

1841. Cyathophyllum priscum Münster: pl. 9: 26. 1968. Tabulophyllum priscum (Münster); GUNIA: 153, pl. 6: 2-5 (with synonymy).

Remarks. — This species has been adequately described by various authors, and the description is not repeated here. Its characteristic features are illustrated on plate 9: 1-3, and on table 2.

Tabulophyllum mcconnelli (WHITEAVES, 1891)

(pl. 8: 3a-c)

1891. Campophyllum ellipticum (HALL and WHITFIELD); WHITFAVES: 202, pl. 27: 5, 6. 1945. Tabulophyllum mcconnelli (WHTEAVES); SMITH: 59, pl. 2: 1-9; pl. 3: 1-7 (with synonymy).

Material. — One silicified specimen, 4 peels. Dimensions (in mm):

L dc sI UAM TcI/54 10 15 34

Remarks. — The Polish specimen resembles most of all the Boulogne specimens described by SMITH (1945: 50, pl. 3: 5-7) in possessing a distinct bilateral symmetry. In Polish specimen this symmetry appears only on neanic stage characterized by a broad cardinal fossula (pl. 8:3a).

Table 2

Comparison of the described Tabulophyllum species

Species	Symmetry and thick- ness of septa	n/d ratio	Major septa	Minor septa	Tabularium	Lonsdaleoid dissepiments
T. priscum (MÜNSTER)	elements thin, sym- metry radial	32/25	short, interrupted	short, interrupted	horizontal or convex	large and small
T. mcconnelli (WHITEAVES)	elements thin, sym- metry bilate- ral	34/15	long	= 1/2 of major septa	horizontal or convex	large
T. densum sp. n.	elements thick, sym- metry bilate- ral	56/36	long, twisted	= 1/5 of major septa	highly do- med, dense	large, thickwalled,
T. irregulare sp. n.	elements thin, sym- metry radial	33/26	short, thin, rarely interrupted	= 4/5 of major septa	highly do- med, dense	narrow, small, rare

Tabulophyllum irregulare sp. n.

(pl. 9: 4, 5a-c)

Holotype: UAM TcI/56; pl. 9: 5a-c.

Type horizon: Upper Frasnian, stratum with Phillipsastrea.

Type locality: Kielce, Wietrznia quarry, Holy Cross Mts.

Derivation of the name: Lat. irregularis --- irregular, because of its irregular septa and tabularium.

Diagnosis. — Small, shortly conical corallites; septa of two orders, short and nearly equal in length; dissepimentarium narrow; tabularium dense and highly domed.

Material. — Ten fragmentary specimens embedded in a reef limestone, 9 thin sections. Dimensions (in mm):

> L dc sI the holotype 17 20 33

Description. — A narrow stereo-septotheca reaches 0.5 mm in width. Major septa are approximately 2.5 mm long, thin, irregularly bent. Minor septa reach 4/5 of length of the

major ones. Rare lonsdaleoid dissepiments occupy a narrow dissepimentarium. In the vertical section the small dissepiments are globose, thin-walled, steeply inclined and arranged in 1-5 rows. The tabulae are mainly incomplete, gathered in systems with many accessory plates.

Variation. — Variability range is especially great in length and width of septa and in their spacing. Tabularium may be highly domed or flattened (pl. 9: 4) with 9-19 tabulae on 5 mm.

Ontogeny. — In the neanic stage with 6 mm in diameter the septa are short, irregular with thickened peripheral ends, embedded in the 0.4-0.6 mm thick stereozone. No dissepiments.

Remarks. — According to GORIANOV (personal comm., 1976) the new species resembles closely *T. gorskii* (BULVANKER 1958); but in the present author's opinion it differs from the latter in having rare lonsdaleoid dissepiments, short and thin septa nearly equal in length and by its strongly domed tabularium.

Family Ptenophyllidae WEDEKIND, 1923 Genus Acanthophyllum DYBOWSKI, 1873 Acanthophyllum frasniense sp. n.

(pl. 10: 1a, b; 2)

Holotype: Specimen IG-1429. II. 16; pl. 10: 1a, b.

Type horizon: Lower or Middle Frasnian, P. asymmetricus Zone. Type locality: Bąkowa IG-1borehole, depth 1829-1835 m, Lublin region. Derivation of the name: Acanthophyllum occurring in the Frasnian.

Diagnosis. — Solitary corallite with continuous major and minor septa in the subtabular section; major septa rotated around corallite axis; rare lonsdaleoid dissepiments in calice; calicular edge sharp; tabularium concave; fibro-normal fine structure of septa.

Material. — Three fragmentary specimens, 4 thin section, 8 peels. Dimensions (in mm):

	L	Dc	sI	sI :sII
IG-1429. II. 16 (holotype)	25	21	24	4:3

Description. — A thin stereozone surrounds the sharp peripheral septal ends. Some of major septa reach the corallite axis. The cardinal septum is the longest one. The axially concave cross sections of dissepiments and tabellae form 14-15 densely arranged rows. The axial tabellae in longitudinal section form a deep depression, only locally having flat horizontal plates.

Fine structure is fibro-normal with closely set crystallization centres, forming a continuous dark line with long, pinnately arranged fibres. In places, where the middle lines of septa bend, deflections arise. In the longitudinal section the very fine fibres are set in half "fans", being nearly horizontal in inner and vertical in peripheral parts of septa. They cross the fine growth lines.

Ontogeny. — In the smallest known section with n/d ratio = 24/15 all septa are dilated, rhopaloid and in lateral touch through the whole dissepimentarium. The corallite increases its diameter and widens interseptal loculi, but not the number of septa. The index of septa of the longest specimen is 25/24.

Remarks. — No one similar Frasnian species of *Acanthophyllum* has been described till now. WALTHER (1928) introduced 3 species of *Neostringophyllum* (= *Acanthophyllum* after BIRENHEIDE 1972: 411) from the Givetian-Frasnian boundary, but none of them is either conspecific or more closely comparable with the afore described one. Genus Grypophyllum WEDEKIND, 1922 Grypophyllum unduliseptatum IVANIA, 1965

(pl. 9: 6-9)

1965. Grypophyllum unduliseptatum IVANIA: 152, pl. 77: 333-334.

Material. — Thirty fragmentary specimens, 33 thin sections, 6 peels. Dimensions (in mm):

	L	Dc	sI	d:t	sI/sII
UAM TcI/58	15	10	20	5:5:3	6:1

Description. — Thick peripheral septal ends spindle-shaped or triangular are embedded in 1 mm thick stereozone. Septa are attenuated in the lumen. Major septa long, undulated along their length, partly reaching the corallite axis. The cardinal septum is the longest one. Minor septa are of various length. Lonsdaleoid dissepiments are rare. In the longitudinal section dissepiments of various length are elongated, flattened, steeply inclined, and arranged in 2-5 rows. Tabellae are narrow, horizontal or concave, locally with a deep depression.

Fine structure of septa is fibro-normal. The centres of calcification form a continuous wavy dark line.

Variation. — The external wall varies from 0.7 to 1.5 mm in thickness; the major septa reach the corallite axis or are shortened; the minor septa are of 1/2 to 1/6 of the length of the major septa; they may be sometimes totally reduced in the lumen; the number of tabellae varies from 5 to 11 on the stretch of 5 mm.

Remarks. — The species described resembles G. gorskyi BULVANKER (1934: 11) and G. salairicum BULVANKER (1958: 145) in having similarly undulated septa. It differs from the former in its larger size, and from the latter in possessing a different septal index (20: 10 versus 36: 11) and in lack of lonsdaleoid dissepiments. According to PEDDER (1967: 2) both the Russian species should be excluded from Grypophyllum, because of their flanged septa.

Family Cystiphyllidae MILNE-EDWARDS and HAIME, 1850 Genus Rachaniephyllum gen. n.

Type species: Rachaniephyllum andreae sp. n., monotypic. Derivation of the name: found in Rachanie in the Lublin region.

Diagnosis. — Phaceloid, laterally offsetting coralla with underdeveloped septa of 2 orders located on the external wall and on horizontal elements; spine-like monacanths; dissepiments elongated, flattened, deeply inclined exially; tabulae globose or platelike, mainly concave. Stratigraphic and geographic range. — Lublin region, Poland; Upper Frasnian.

Remarks. — The specimens described from Rachanie are slightly similar to the Russian species Tabellaephyllum mosquense, T. livnense and T. rosiformae (all SOSHKINA 1952) from the Frasnian and Famennian on the Russian Platform and from the Ural Mts. However, the type species of Tabellaephyllum, T. peculiare STUMM, is a Mississippian tabulate coral Mi-chelinia from the USA (OLIVER and SANDO 1977). The Russian species, described by SOSHKINA (l. c.) may be representatives of the genus Utaratuia CRICKMAY that have a spongophylloid character with cerioid coralla and spine-like septa located on wall and on horizontal structural elements. The dissepimentarium is there clearly distinguished from the tabularium. Polish specimens are not congeneric with the Canadian or with the Russian species, having phaceloid coralla, a dissepimentarium, not separated distinctly from a tabularium, spine-like monacanthine septa of two lengths and a lateral offsetting.

Rachaniephyllum andreae sp. n.

(pl. 10: 3-6)

Holotype: Ig-1429. II. 21; pl. 10:5.

Type horizon: Lublin region, borehole Rachanie IG-1, depth 1805 m. Derivation of the name: after the Polish name Andrzej.

Diagnosis. — A phaceloid, laterally offsetting corallite with monacanths present as short spine-like projections, with elongated dissepiments and with horizontal or concave tabellae. Material. — Seven fragmentary coralla and 9 thin sections.

Dimensions (in mm):

L dc IG-1429. II. 21 20 10-15

Description. — Calices cup-shaped, 8 mm in depth with sloping walls and flat or concave floors. Trabecular spines (0.3-0.6 mm long) deeping slightly into the 0.3 mm thick external stereozone, and then are projected axially on surfaces of dissepiments and tabellae. Dissepiments are elongated, flattened, deeply inclined, and arranged in 1-3 rows. The tabellae are blister-like or concave. Septal spines are pinnately fibrous, 0.2 mm in width.

Variation. — Variation is shown only in the arrangement and size of dissepiments and tabellae.

Blastogeny. — Blastogeny has been observed in 3 corallites. (1) The parent corallite, 15 mm in diameter, has 4 vertical lateral daughter corallites in contact. With the diameter of 1.5-2.0 mm they have complete tabulae and 2.5 mm long, vertical septa in common with the parent corallite; dissepiments appear approximately 3 mm higher up (pl. 10: 3b).

(2) The youngest corallite, 3 mm in diameter, has closely set monacanths of equal length; no dissepiments and large sections of tabellae (pl. 10: 6).

(3) The parent corallite, 14 mm in diameter, has one offset in vertical section closely connected with the protocorallite (pl. 10: 2a), and arising from its dissepimentarium. Its proximal end is diaphragmatophoric with first tabula complete, and increased as a prolongation of the parent's dissepiment. Together with the incomplete next tabula a row of small dissepiments appears along the offset's exterior wall. The new wall between the offset and the parent corallite is composed of two stereozones with one epitheca between them.

Uniwersytet im. Adama Mickiewicza Katedra Geologii Pracownia Paleozoologii Bezkręgowców 61-725 Poznań ul. Mielżyńskiego 27/29

REFERENCES

ALTEVOGT, G. 1963. Die oberdevonischen rugosen Korallen von der asturischen Küste (Cabo Penas, Nordspanien). — N. Jb. Geol. — Paläont.Abh., 117 9-38.

AUBERT, M. 1968. Observations sur le Frasnien de Pépinster et de Trooz. — Ann. Soc, Géol. Belgique, 91, 347-360.
 BIERNAT, G. and SZULCZEWSKI, M. 1975. The Devonian brachiopod Phlogoiderhynchus polonicus (Roemer, 1866) from the Holy Cross Mountains, Poland. — Acta Palaeont. Polonica, 20, 2, 199-217.

- Ведргодиаллусн, N. I., DUBATOLOV, V. N., KRAVTSOV, A. G., LATYPOV, Yu. Ya., SPASSKY, N. Ya. (Беспрозванных Н. И., Дубамолов, В. Н., Кравцов, А. Г. Ламынов, Ю. Я. Спасскии, Н. Я.) 1975. Девонские ругозы Таймыро-Колымской провинций. — "Наука", 228, 1-116, Москва.
- BIRENHEIDE, R. 1972. Ptenophyllidae (Rugosa) aus dem Westdeutschen Mitteldevon. Senckenberg Lethaea, 53, 5, 405-437.
- BRICE, D. and ROHART, J. C. 1974. Les Phillipsastraeidae (Rugosa) du Dévonien de Ferques (Boulonnais, France). Ann. Soc. Géol. du Nord, 94, 1, 47-62.
- ВULVANKER, Е. Z. (Бульванкер, Э. З.) 1934. Средне-девонские кораллы гр. Rugosa зап. склона Урала Кизеловского р-на. Тр. ЦНИГРИ, 10, 1-18.
- (Бульванкер, Э. З.) 1958. Девонские четыренлучевые кораллы окраин Кузнецкого бассейна. Тр. ВСЕГЕИ, 1-212.
- GORIANOV, V. B., IVANOVSKY, A. B., SPASSKY, N. Ya., SCHUKINA, V. Ja. (Бульванкер, Э. З., Горянов, В. Б., Ивановский, А. Б., Спасский, Н. Я., Щукина, В. Я. (1968. Новые виды древных растений и беспозвоночных СССР. — ВСЕГЕИ, 2, 14-55.
- CHOROWSKA, M. 1975. Konodonty franu i femanu dolnego Antykliny Krakowa (Frasnian and Lower Famennian Conodonts of the Cracow Anticline). *Biul. Inst. Geol.*, 282, 13, 69-100.
- COEN, M. 1972. Facies, Conodontes, et stratigraphie du Frasnien de l'est de la Belgique, pour servir à une révision de l'étage. Ann. Soc. Géol. Belgique, 95, 2, 239-253.
- and COEN-AUBERT, M. 1976. Conodontes et coraux de la partie supérieure du Frasnien. Bull. Inst. r. Sci. nat. Belg., 50, 8, 1-7.
- -, and CORNET, P. 1976. Distribution et extension stratigraphique des récifs à "Phillipsastrea" dans le Frasnien de l'Ardenne. Ann. Soc. Géol. Nord., 96, 325-331.
- Coen-Aubert, M. 1970. Le Givétien et le Frasnien Inférieur de Pepinster. Ann. Soc. Géol. Belgique, 92, 3, 383-395.
- 1974. Représentants des genres Phillipsastrea d'Orbigny A., 1849, Billingsastraea Grabau, A. W. 1917, et Iowaphyllum Stumm, E. C., 1949, du Frasnien du Massif de la Vesdre et de la bordure orientale du Bassin de Dinant. — Bull. Inst. R. Sci. Nat. Belg. 49, 8, 1-38.
- 1976. Distribution stratigraphique des Rugueux massifs du Givétien et du Frasnien de la Belgique. Ann. Soc. Géol. Nord. 97, 49-56.
- CZARNOCKI, J. 1948. Przewodnik XX Zjazdu P. T. Geol. w Górach Świętokrzyskich w 1947 r. Roczn. P. T. Geol., 17, 238-299.
- DYBOWSKI, W. N. 1873. Beschreibung zweier aus Oberkunzendorf stammenden Arten der Zoantharia Rugosa. Ztschr. Deutsch. Geol. Ges., 25, 402-408.
- FEDOROWSKI, J. 1967. A revision of the genus Ceratophyllum Gürich, 1896 (Tetracoralla). Acta Palaeont. Polonica, 12, 2, 213-222.
- FENTON, C. L. and FENTON, M. A. 1924. The stratigraphy and fauna of the Hackberry stage of the Upper Devonian. Contr. Mus. Geol. Univ. Michigan, 1, 1-260.
- FOERSTE, A. F. 1909. Preliminary notes on Cincinnatian tossils. Bull. Sci. Lab. Denison Univ., 14, 208-232.
- FRECH, F. 1885. Die Korallenfauna des Oberdevons in Deutschland. Ztschr. Deutsch. Geol. Ges., 37, 21-130.
- Gorianov, V. B. (Горянов, В. Б.) 1961. Новый род ругоз из среднедевонских отложений Южной Ферганы. — Палеонтол. журнал. 1, 70-74.
- GUNIA, T. 1962. Fauna otoczaków wapieni a zagadnienie wieku zlepieńców Witoszowa (Dolny Śląsk). (The fauna of limestone pebbles and the problem of age of the Witoszów conglomerates (Lower Silesia)). — Roczn. P. T. Geol., 32, 4, 493-522.
- 1966. Fauna i wiek otoczaków z kulmu Książa. (Fauna and age of limestone pebbles in the Culm of Książ). Geol. Sudetica, 2, 297-321.
- 1966. Nowe wyniki badań nad stratygrafią i paleogeografią górnego dewonu Depresji Świebodzic (New investigations of the stratigraphy and palaeogeography of the Upper Devonian of the Świebodzice Depression). Sesja naukowa dwudziestolecia polskich badań geologicznych 1945-1965. Zagadnienia geologii Podstawowej i Stosowanej, 169-183, Wrocław.
- 1968. Fauna, stratygrafia i warunki sedymentacji górnego dewonu Depresji Świebodzic (On the fauna, stratigraphy and conditions of sedimentation of the Upper Devonian in the Świebodzice Depression (Middle Sudetes)). — Geol. Sudetica, 4, 116-220.
- GÜRICH, G. 1896. Das Palaeozoicum im Polnischen Mittelgebirge. Russ. Kais. Min. Ges., 2, 32, 1-539, St. Petersburg.
- 1900. Nachtrage zum Palaeozoicum des Polnischen Mittelgebirges. N. Jb. Min. Geol. Palaeont. B. B., 13, 331-388.
- HILL, D. 1939. The Devonian Rugose Corals of Lilydale and Loyola, Victoria Proc. Roy. Soc. Victoria, 51 (N. S.), 22, 2, 219-256.
- 1940. The Lower Middle Devonian Rugose corals of the Murrumbigee and Goodradgbee Rivers, N. S. W. -
- J. Proc. Roy. Soc. N. S. W., 74, 247-276.
- 1954. Coral faunas from the Silurian of New South Wales, and the Devonian of Western Australia. Commonw. Australia, Dep. Nat. Devel., Geol., Geophys., 23, -51.

 and JELL, S. 1970. Devonian corals from the Canning Basin Western Australia. — Geol. Surv. West. Australia, Bull. 121, 1-103.

- IVANIA, V. А. (Ивания, В. А.) 1965. Девонские кораллы Rugosa Саяано-Алтайской горной области. Изд. Томского Унив, 3-398, Томск.
- IVANOVSKY, А. В. (Ивановский, А. Б.) 1976. Указатель родов ругоз. Ак. Н. СССР С. От. "Наука", 17-254, Москва.
- JELL, J. S. 1969. Septal microstructure and classification of the Phillipsastraeidae. In: CAMBELL (ed.), Stratigraphy and Paleontology. Essays in honour of Dorothy Hill, 50-73, Canberra.
- and HILL, D. 1969. Devonian corals from Ukalunda. Geol. Surv. Queensland. Publ. 340, Palaeont. 16, 1-27, Brisbane.
- 1970. The Devonian coral fauna of the Point Hibbs Limestone, Tasmania. Proc. Roy. Soc. Tasmania, 104, 1-16.
- LANG, W. D. 1926. Naos pagoda (Salter) the type of a new genus of Silurian corals. Quart. J. Geol. Soc., 82, 428-435.
- 1939. On new generic names for Palaeozoic corals. Ann. Mag. Nat. Hist., 2, 3, 152-156.
- and SMITH, S. 1935. Cyathophyllum caespitosum Goldfuss, and other Devonian corals considered in a revision of that species. Ibidem, 91, 538-590.
- -, Smith, S. and THOMAS, H. D. 1940. Index of Palaeozoic coral genera. British Museum, 1-231, London.
- LECOMPTE, M. 1952. Madréporaires paléozoiques. In: PIVETEAU, J. (éd.). Traité de Paléontologie, 419-501, Paris. — 1970. Die Riffe im Devon der Ardennen und ihre Bildungsbedingungen. — Geologica Palaeontol. 4, 25-71.
- LIAO WEIHUA, 1977. On the Middle and Upper Devonian boundary by tetracorals in Dushan District, Southern Guizhou. Acta Paleont. Sinica, 16, 37-51.
- MAŁKOWSKI, K. 1971. Stratygrafia górnego dewonu okolic Górna na podstawie konodontów. Arch. Inst. Geologii Podstawowej Uniwersytetu Warszawskiego.
- MERRIAM, C. W. 1973. Middle Devonian Rugose corals of the Central Basin. Geol. Surv. Professional Paper, 799, 1-53.
- MILACZEWSKI, L. 1975. Tomaszów Lubelski IG-1, Jarczów IG-2. Dewon. In: A. Żelichowski (ed.), Profile głębokich otworów wiertniczych Instytutu Geologicznego, 24, 54-83, Warszawa.
- OLIVER, W. A. 1976. Noncystimorph colonial rugose corals of the Onesquethaw and Lower Cazenovia stages (Lower and Middle Devonian) in New York and adjacent areas. Geol. Surv. Professional Paper, 869, 1-156.
- -- and GALLE, A. 1971. Rugose corals from the Upper Koneprusy Limestone (Lower Devonian) in Bohemia. -- Sbornik Geol. Ved. Paleontologie, 14, 35-106.
- and SANDO, W. J. 1977. Tabellaephyllum Stumm is a Michelinia (Carboniferous, Tabulata). J. Paleont. 51, 2, 422-423.
- PAJCHLOWA, M. et al. 1968. Budowa geologiczna Polski, 1, Stratygrafia, 1, prekambr i paleozoik. Inst. Geol. 313-362, Warszawa.
- and STASIŃSKA, A. 1965. Formations récifales du Dévonien des Mts de Sainte Croix (Pologne). Acta Palaeont. Pol., 10, 2, 249-260.
- PEDDER, A. E. H. 1967. Lyrielasma and a new related genus of Devonian tetracorals. Proc. Roy. Soc. Victoria, 80, 1, 1-30.
- 1965. A revision of the Australian Devonian corals previously referred to Mictophyllum. Ibidem, 78, 2, 201-220.
- 1965. The Devonian tetracoral Haplothecia and new Australian Phacellophyllids. Proc. Lin. Soc. N. S. W., 90, 2, 181-188.
- 1972. Species of the tetracoral genus Temnophyllum from Givetian /Frasnian boundary beds on the District of Mackenzie, Canada. — J. Paleont., 46, 5, 696-710.
- 1973. Description and biostratigraphical significance of the Devonian coral genera Alaiophyllum and Grypophyllum in Western Canada. GSC Bull. 222: Contr. Canadian Paleont. 93-116.
- PICKETT, J. 1967. Untersuchungen zur Familie Phillipsastreidae (Zoantharia Rugosa). Inaugural-Dissertation, 1-88, Frankfurt.
- REED, F. R. C. 1922. Devonian fossils from Chitral and the Pamirs. Palaeont. Indica. (n. ser.), 6, 4, 1-134.
- ROEMER, F. A. 1855. Beiträge zur Kenntnis des nordwestlichen Harzgebirges. Palaeontographica, 3, 1, 1-52.
- Różkowska, M. 1953. Pachyphyllinae et Phillipsastraea du Frasnien de Pologne Palaeont. Pol., 5, 1-89.
- 1957. Considerations on Middle and Upper Devonian Thamnophyllidae in Poland. Acta Palaeont. Polonica, 2, 2-3, 81-153.
- 1960. Blastogeny and individual variations in tetracoral colonies from the Devonian of Poland. Ibidem, 5, 1, 3-64.
- 1965. Marisastridae n. fam. and Marisastrum n. gen. Devonian corals. Ibidem. 10, 2, 261-266.
- and FEDOROWSKI, J. 1972. Genus Disphyllum de Fromentel (Rugosa) in the Devonian of Poland and its distribution.
 Ibidem, 17, 3, 265-340.
- SCHINDEWOLF, O. H. 1924. Bemerkungen zur Stratigraphie und Ammoneenfauna des Saalfelder Oberdevons. Senckenbergiana, 6, 1/2, 95-113.
- SCHLÜTER, C. 1881. Über einige Anthozoen des Devon. Zeitschr. Deutsch. Geol. Ges., 33, 75-108.

- Schouppé, A. v. 1965. Die Mittel bis oberdevonische Korallenfauna von Kuragh (Chitral). Ital. Expedition to Karakorum and Hindukush. Scient. reports. IV — Paleontology, 13-53, Leiden.
- SCRUTTON, C. T. 1967. Marisastridae (Rugosa) from south-east Devonshire, England. Palaeontology, 10, 2, 266-279.
 1968. Colonial Phillipsastraeidae from the Devonian of southeast Devon, England. Bull. Brit. Mus. (Nat. Hist.), Geology, 15, 5, 183-281.
- SHERZER, W. H. 1892. Revision and monograph of the genus Chonophyllum. Bull. Geol. Soc. Amer., 3, 253-282.
- SIMPSON, G. B. 1900. Preliminary descriptions of new genera of Palaeozoic rugose corals. Bull. New York State Mus., 8, 39, 199-222.
- SMITH, S. 1945. Upper Devonian corals of the Mackenzie River Region, Canada. Geol. Soc. Amer., Spec. Pap. 59, 1-126.
- SLÓSARZ, J. and ŻAKOWA, H. 1975. Dewon antykliny Krakowa (The Devonian of the Cracow Anticline). Inst. Geol. Biul., 282, 1-68.
- SOBOLEV, D. (Соболев, Д.) 1909. Средний девон Келецко-Сандомирского Кряжа. Мат. Геол. Росс., 24, Ст. Петерсбург.
- SORAUF, J. E. 1967. Massive Devonian Rugosa of Belgium. Univ. Kansas Paleont. Contr., 16, 1-41.
- 1971. Microstructure in the exoskeleton of some Rugosa (Coelenterata). J. Paleont., 45, 1, 23-31.
- Soshkina, Е. D. (Сошкина, Э. Д.) 1939. Верхнедевонские кораллы Rugosa, Урала. Тр. Пал. Инст. А. Н. СССР, 9, 2, 5-88.
- -- (Сошкина, Э. Д.) 1951. Позднедевонские кораллы Rugosa, их систематика и еволюция. -- Ibidem, 34, 3-124.
- (Сошкина, Э. Д.) 1952. Определитель девонских четырёхлучевых кораллов. Ibidem, 39, 3-128.
- (Сошкина, Э. Д.) 1954. Девонские четырёхлучевые кораллы Русской платформы. Ibidem, 52, 1-74.
- SPASSKY, N. Ya. (Спасский, Н. Я.) 1960. Девонские четырёхлучевые кораллы Рудного Алтая. Госгеолмехиздат, 3-143, Москва.
- STRUCZ, D. L. 1965. Disphyllidae and Phacellophyllidae from the Devonian Garra Formation of New South Wales. Palaeontology, 8, 3, 518-571.
- STUMM, E. C. 1948. Upper Devonian compound tetracorals from the Martin Limestone. J. Paleont., 22, 1, 40-47.
- 1949. Revision of the families and genera of the Devonian tetracorals. Mem. Geol. Soc. Amer., 40, 1-91.
- 1965. Silurian and Devonian corals of the falls of the Ohio. Ibidem, 93, 1-184.
- SZULCZEWSKI, M. 1971. Upper Devonian conodonts, stratigraphy and facial development in the Holy Cross Mts. Acta Geol. Polonica, 21, 1, 1-129.
- WALTHER, C. 1928. Untersuchungen über die Mitteldevon-Oberdevongrenze. Ztschr. Deutsch. Geol. Ges., 80, 97-152.
- WATKINS, J. L. 1959. On the identity of the Devonian rugose coral Diversophyllum with Tabulophyllum, and notes on the genus Charactophyllum. -- J. Paleont., 33, 1, 81-82.
- WEDEKIND, R. 1924-1925. Das Mitteldevon der Eifel. Schriften Ges. Beförd. Naturwiss., 14, 3-4, 1-85, 1-93.
- WRZOŁEK, T. 1976. Koralowce Rugosa górnego franu kamieniołomu Jaźwica (Góry Świętokrzyskie). Unpublished reports U. W., album 78822, 1-40, Warszawa.
- YOH, SEN-SHING, 1937. Die Korallenfauna des Mitteldevons aus der Provinz Kwangsi, Südchina. Palaeontographica, 87, A, 45-76.
- ZHELTONOGOVA, V. A. and IVANIA, V. A. (Желтоногова, В. А., Ивания, В. А.) 1960. Подкласс Tetracoralla (Rugosa), Тетракораллы 368-408. Биостратиграфия Палеозоя Саяна-Алтайской Горной области (ред. Халфин Л. Л.). — Тр. СНИИГГИМС, 20, 2, 3-600.

EXPLANATION OF THE PLATES

Depths of boreholes are indicated by numbers in parentheses

PLATE 1

Pag	go
(?) Breviphrentis sp	6
 a — transverse section, b — longitudinal section, ×2. Specimen IG-1429. II. 1, Bakowa IG-1 (1829-1835 m); Frasnian. 	
Smithicyathus lubliniensis sp. n	8
 Transverse section of fragment of a colony, ×2. Specimen IG-1429. II. 2, Korczmin IG-1 (2024-2040 m); Frasnian a — transverse section, b — longitudinal section, ×2. c — transverse section, ×5. Holotype specimen IG-1429. II. 5 Korczmin IG-III (1891-1897 m); Frasnian. 	n. 5;
Heliophyllum proliferum (FRECH, 1885 non ROEMER, 1855) 1	8
4. Transverse section of offsetting corallite, ×3. Specimen U. Wr. D. Św. K-1, Lubiechów; Frasnian.	
Pterorrhiza multizonata (REED)	0
 Longitudinal section, ×1.5. Specimen IG-1429. II. 4, Bąkowa IG-1 (1829-1835 m); Frasnian. a cross section, b longitudinal section, ×2. Specimen IG-1429. II. 3, Niesiołowice IG-1 (1130-1336) m; Frasnian. 	S-
Pseudopetraia devonica Soshkina	6
7. a – transverse section, b – longitudinal section, ×5. Specimen UAM TcI/1, Sobiekurów; Frasnian.	
Craterophyllum (?) humile sp. n	7
 a — view of the lateral side, b — transverse section of a polished surface, ×2. Specimen UAM Tcl/2, Kowala II Frasnian (Palmatolepis gigas Zone). 	[;
Phillipsastrea plantana sp. n	9

9. Longitudinal section, ×5. Specimen UAM TcI/3, Sobiekurów; Frasnian.

PLATE 2

									Pag
Phillipsastrea	plantana	sp. n.							19

1. a — cross section, $\times 2$, b — longitudinal section, $\times 3$. Holotype specimen UAM TcI/4, Sobiekurów; U. Frasnian

a — cross section, ×2, b — cross section of an offsetting corallite ×3, c, d, e — longitudinal sections of a phaceloid corallum, ×2. Holotype specimen UAM Tcl/6, Górno; Frasnian (Polygnathus asymmetricus Zone).

3. a—offsetting corallite in cross section, b—offsetting corallite in longitudinal section, ×4. Specimen UAM TcI/7, Chojnice 3 (2879-2883 m); Frasnian (*Polygnathus asymmetricus* Zone).

4. Transverse section ×2. Specimen UAM TcI/8, Karniowice 4 (294 m); Frasnian (Polygnathus asymmetricus Zone).

5. a — view of an upper surface of the colony, b — cross section, ×2. Specimen UAM TcI/5, Kadzielnia 7; Frasnian (Polygnathus asymmetricus Zone).

a — transverse section, b — longitudinal section, ×2, c — exterior view of the corallite, ×1.2. Holotype specimen UAM TcI/13, Kowala II; Frasnian (*Palmatolepis gigas* Zone).

PLATE 3

- 1. Longitudinal section with an offset, ×2. Specimen IG-1429. II. 7, Bakowa IG-1 (1931-1937 m); L. or M. Frasnian.
- 2. Cross section ×2. Specimen UAM Tcl/18, Kowala II; Frasnian (Palmatolepis gigas Zone).
- a longitudinal section, b transverse section, ×2. Holotype specimen IG-1429. II. 6, Bąkowa IG-1 (1931-1937 m); Frasnian.
- 4. Cross section, ×2. Specimen IG-1429. II. 8, Bakowa IG-1 (1889-1907 m); Frasnian.
- 5. Cross section, ×2. Specimen IG-1429. II. 5, Bąkowa IG-1 (1909-1915 m); Frasnian.

4*

6. External view of a corallite, ×1. Specimen UAM TcI/17, Kowala II; Frasnian (Palmatolepis gigas Zone).

Page Ceratophyllum kielcense sp. n
 Longitudinal section ×2. Specimen UAM TcI/12, Karniowice 4 (293 m); Frasnian (Polygnathus asymmetricus Zone). Cross section ×3. Specimen UAM TcI/11, Psie Górki; Frasnian. Cross section ×3. Specimen UAM TcI/10, Wietrznia 22; Frasnian (U. Polygnathus asymmetricus Zone). a - longitudinal section ×2, b - cross section ×2. Holotype specimen UAM TcI/9, Wietrznia 13; age as above.
Ceratophyllum heterophylloides (FRECH) 23
11. a — cross section ×2. b — longitudinal section ×2. Specimen UAM TcI/14, Wietrznia 13; Frasnian as above.
Debnikiella formosa sp. n

12. Cross section ×2. Specimen UAM Tcl/16, Wietrznia; U. Frasnian (Ancyrognathus triangularis Zone).

PLATE 4

- 1. a longitudinal section ×2, b cross section ×2. Specimen UAM TcI/19, Kadzielnia 7; Frasnian (Polygnathus asymmetricus Zone).
- 2. Cross section ×2. Specimen IG-1429. II. 9, Niesiołowice IG-1 (1330-1336 m); Frasnian.

Charactophyllum	lotzei	ALTEVOGT													2	9
-----------------	--------	----------	--	--	--	--	--	--	--	--	--	--	--	--	---	---

- a longitudinal section ×2. Specimen U. Wr. D. Sw./K3, Witoszów 7, b cross section ×2. Specimen U. Wr. D. Sw./K3, Witoszów 10; Frasnian (Polygnathus asymmetricus Zone).
- 4. Cross section ×5. Specimen U. Wr. D. Sw./K4, Witoszów 10; age as above.

5. a — longitudinal section ×2, b — cross section ×2. Specimen UAM TcI/27. Kadzielnia 9; Frasnian (Polygnathus asymmetricus Zone).

6. a — cross section $\times 2$, b — longitudinal section $\times 2$. Holotype specimen UAM TcI/28, Sobiekurów; Frasnian.

7. a — longitudinal section ×2, b — cross section ×2. Specimen UAM TcI/21, Kadzielnia 7; Frasnian (Polygnathus asymmetricus Zone).

- 8. Cross section ×2. Specimen U. Wr. D. Sw./K5, Witoszów 10; age as above.
- 9. Longitudinal section $\times 2$. Specimen UAM TcI/22, Kadzielnia 7; age as above.
- 10. Longitudinal section ×2. Specimen UAM TcI/24, Wietrznia 16; age as above.
- 11. Cross section $\times 2$. Specimen UAM TcI/26, Wietrznia 16; age as above.
- 12. Cross section ×2. Specimen IG-1429. II. 10, Bąkowa IG-1 (1968-1975 m); L. or M. Frasnian.
- 13. Longitudinal section ×2. Specimen U. Wr. D. Sw./K6, Witoszów 10; Frasnian (Polygnathus asymmetricus Zone).
- 14. Oblique section $\times 2$. Specimen UAM TcI/20, Wietrznia 13; age as above.
- 15. Cross section ×3. Specimen UAM Tcl/25, Kadzielnia 21; age as above.
- a transverse section ×2, b longitudinal section ×2. Holotype, specimen UAM TcI/15, Dębnik; Frasnian (Palmatolepis gigas Zone).

PLATE 5

1. Cross section of a young corallite ×2. Specimen TcI/23, Kadzielnia 9; Frasnian (Polygnathus asymmetricus Zone).

- 2. a transverse section ×2, b longitudinal section ×2. Specimen UAM TcI/30, Kadzielnia 9; Frasnian (Polygnathus asymmetricus Zone).
- 3. Longitudinal section $\times 2$. Specimen UAM TcI/32, Kadzielnia 3; age as above.
- 4. a transverse section $\times 2$, b longitudinal section $\times 2$. Specimen UAM TcI/30, Kadzielnia 9; age as above.

- Transverse section ×2. Specimen UAM TcI/33, Wietrznia 13; Frasnian (Polygnathus asymmetricus Zone).
 Transverse section ×2. Specimen UAM TcI/34, Wyszebórz IG-1 (2385-2389 m); age as above.
- 7. a longitudinal section ×2, b transverse section ×2. Holotype specimen UAM TcI/29, Kadzielnia; Frasnian (*Polygnathus asymmetricus* Zone).

a — longitudinal section ×2, b — transverse section ×2. Specimen UAM TcI/35, Kowala II; U. Frasnian.
 Transverse section ×4. Specimen U. Wr. D. Sw./K7, Witoszów; L. or M. Frasnian.

Page

P	'age
Fedorowskicyathus similis sp. n	36
ansverse section $\times 2$. Specimen UAM TcI/39, Kowala II; Frasnian (<i>Palmatolepis gigas</i> Zone). ingitudinal section $\times 2$. Specimen UAM TcI/36, Kowala II; age as above.	
Temnophyllum turbinatum HILL	32
- longitudinal section $\times 2$, b - transverse section $\times 2$. Specimen IG-1429. II. 13, Bakowa IG-1 (1877-1883 n asnian.	n);
ansverse section ×2. Specimen IG-1429. II. 11, Bąkowa IG-1 (1877-1883 m); Frasnian. lique transverse section ×2. Specimen IG-1429. II. 14, Bąkowa IG-1 (1895-1901 m); Frasnian. ngitudinal section, ×2 (mounted upside-down). Specimen IG-1429. II. 12, Bąkowa IG-1 (1895-1901 m); L. or I asnian.	М.
PLATE 6	
Fedorowskicyathus similis sp. n	36

- 1. a transverse section, b longitudinal section, $\times 2$. Specimen UAM TcI/41.
- 2. a -- longitudinal section, b -- transverse section, $\times 2$. Holotype specimen UAM TcI/38:
- 3. Exterior view of a corallite $\times 1.5$. Specimen UAM TcI/40.
- 4. a view of the calice, b view of the lateral side $\times 2$. Specimen UAM TcI/42.
- 5. a transverse section, b longitudinal section $\times 2$. Specimen UAM TcI/38.
- All specimens from Kowala II, Frasnian (Palmatolepis gigas Zone).

- 6. a longitudinal section, b transverse section, $\times 2$. Holotype specimen UAM TcI/46.
- 7. View of the calice $\times 2$. Specimen UAM TcI/45.
- 8. View of the exterior surface ×1.3. Specimen UAM TcI/44. All specimens from Kowala II; Frasnian (*Palmatolepis gigas* Zone).

PLATE 7

Chonophyllum dulce sp. n. \ldots \ldots \ldots 37

1. a — transverse section, b — longitudinal section, ×2. Holotype specimen UAM Tcl/43, Wietrznia 15; Frasnian Palmatolepis gigas Zone).

a — transverse section of the polished surface ×1, b — transverse thin section ×1.3. Holotype specimen A, UAM TcI/50, Wietrznia 15; Frasnian (Palmatolepis gigas Zone).

10. 11.

12.

13. 14. 15.

Iowanhvllum	aliveri	sn n								38
iowupnynum	OWVErt	ъμ. п.								- 30

3. Transverse section of a fragmentary corallite ×2. Specimen UAM TcI/48, Karczówka; Frasnian (*Palmatolepis gigas* Zone).

4. a — lateral view of the corallite, ×1, b — longitudinal section ×1, c — transverse section ×1, d — fragment of transverse section ×2, e — fragment of transverse section ×1; all sections from the polished surfaces. Holotype specimen UAM TcI/47, Kowala II; Frasnian (*Palmatolepis gigas Zone*).

PLATE 8

a — view of the weathered calicular surface, b — lateral side of the corallite ×1, c, d — transverse and longitudinal sections of polished surfaces ×1, e — transverse thin section ×2. Holotype specimen UAM TcI/51, Kowala II; Frasnian (*Palmatolepis gigas Zone*).

2. a — longitudinal section of the polished surface ×1. Holotype specimen A, UAM TcI/50, Wietrznia; Frasnian (Palmatolepis gigas Zone).

b — a fragment of the transverse section of the polished surface $\times 2$, c — transverse thin section $\times 2$. Specimen B, UAM TcI/49, Wietrznia; age as above.

a — transverse section of the neanic stage, b — transverse section of the ephebic stage, c — longitudinal section all ×3. Specimen UAM TcI/54, Kowala II; Frasnian (Palmatolepis gigas Zone).

PLATE 9

Tabulophyllum priscum (MÜNSTER)42

1. a, b — transverse sections of a young corallite $\times 2$. Specimen UAM TcI/53, Sobiekurów; Frasnian.

2. Transverse section, ×2. Specimen U. Wr. D. Św./K7, Mokrzeszów; Frasnian (Palmatolepis gigas Zone).

3. Longitudinal section, ×2. Specimen U. Wr. D. Św./K8, Mokrzeszów; age as above.

Page

Page

- 4. Transverse section of a young corallite ×2. Specimen UAM TcI/55, Wietrznia 19; Frasnian (Palmatolepis glgas Zone).
- a incomplete transverse section ×2, b transverse section ×2, c longitudinal section ×2. Holotype specimen UAM TcI/56, Wietrznia 19; age as above.

- 6. a longitudinal section, b transverse section ×2. Specimen UAM TcI/57, Wietrznia 10; Frasnian (Polygnathus asymmetricus Zone).
- 7. Cross section $\times 2$. Specimen UAM TcI/58, Wietrznia 10; age as above.
- 8. Cross section ×2. Specimen IG-1429. II. 15, Bąkowa IG-1 (1913-1911 m); Frasnian.
- 9. Longitudinal section of two corallites ×2. Specimen UAM TcI/59, Wietrznia 10; Frasnian (Polygnathus asymmetricus Zone).

a — transverse section near the proximal end ×2, b — transverse section, c — longitudinal section ×2. Holotype specimen UAM TcI/52, Wietrznia 13; M. Frasnian.

PLATE 10

- 1. a-longitudinal section, b-transverse section, ×2. Holotype specimen IG-1429. II. 16, Bąkowa IG-1 (1829-1835 m); L. or M. Frasnian.
- 2. Supratabular transverse section ×2. Specimen IG-1429. II. 17, Bąkowa IG-1 (1829-1825 m); L. or M. Frasnian,

- a oblique section of a colony ×2. Specimen IG-1429. II. 19, Tyszowce IG-2 (2026-2053 m); Upper Frasnian,
 b offsetting corallite of the same colony ×2, c transverse section of the same colony ×2.
- 4. a transverse section, b longitudinal section of corallites of phaceloid corallum ×2; specimen IG-1429. II. 20, Korczmin IG-1 (2056-2080 m); Upper Frasnian.
- 5. Transverse section of corallites ×2. Holotype specimen IG-1429. II. 21, Rachanie IG-1 (1805-1821 m); Upper Frasnian.
- 6. Transverse section of young corallites ×3. Specimen IG-1429. II. 18, Tyszowce IG-2 (2036-2053 m); Upper Frasnian.

M. Różkowska: Frasnian tetracorals from Poland

M. Różkowska: Frasnian tetracorals from Poland

M. Różkowska: Frasnian tetracorals from Poland

M. Różkowska: Frasnian tetracorals from Poland

