JADWIGA KARCZEWSKA and MARIA ZIEMBIŃSKA-TWORZYDŁO

NEW UPPER CRETACEOUS CHAROPHYTA FROM THE NEMEGT BASIN, GOBI DESERT

KARCZEWSKA, J. and ZIEMBIŃSKA-TWORZYDŁO, M.: New Upper Cretaceous Charophyta from the Nemegt Basin, Gobi Desert, Palacontologia Polonica 42, 97-146, 1981.

Upper Cretaceous gyrogonites of Charophyta, including thirty four species belonging to sixteen genera, are described from the continental deposits of the Nemegt Formation from the Nemegt Basin, Gobi Desert, in Mongolia. It is demonstrated that the studied charophyte assemblages are autochtonous. The lack of transport is indicated by an excellent preservation of the gyrogonite ornamentation and by great differentiation of their size. Eighteen species are new. Most conumon are the representatives of the genera *Mongolichara* and *Mesochara*, which are typical of this region. The generic composition of the Upper Cretaceous charophyte assemblages of Mongolia and China is similar. Among others the genera: *Euaclistochara*, *Maedlerisphaera*, *Obtusochara*, *Latochara* and *Harrisichara* are common for China and Mongolia, but *Atopochara* found in the Upper Cretaceous of Mongolia has not so far been recorded from China.

Key words: Mesozoic Algae, Charophyta, Cretaceous, oogonia.

Jadwiga Karczewska. Polska Akademia Nauk, Zaklad Paleobiologii, 02-089 Warszawa, al. Żwirki i Wigury 93, Poland; Maria Ziembińska-Tworzydło. Uniwersytet Warszawski, Zakład Paleontologii, 02-089 Warszawa, al. Żwirki i Wigury 93, Poland.

Received: May 1979.

Streszczenie. — W pracy niniejszej opracowano oogonia górnokredowych Charophyta z formacji Nemegt, z Basenu Nemegt w Mongolii, które zaliczone zostały do 34 gatunków, 16 rodzajów. Wykazano, że opisywany zespół Charophyta znajduje się na złożu pierwotnym, o braku transportu świadczy bardzo dobry stan zachowania ornamentacji oogoniów oraz duże zróżnicowanie ich wielkości. W zespole tym jest osiemnaście gatunków nowych. Najliczniejsze i najbardziej zróżnicowane gatunkowo są rodzaje *Mongolichara* i *Mesochara*, które są typowe dla Basenu Nemegetańskiego. Okazało się, że na obszarze Mongolii skład rodzajowy zespołów górnokredowych Charophyta jest zbliżony do analogicznych zespołów w Chinach. Między innymi można wymienić rodzaje: *Euaclistochara, Maedlerisphaera, Obtusochara, Latochara* i *Harrisichara* wspólne dla Mongolii i Chin. Poza tym w Mongolii znaleziono *Clavatoraceae* z rodzaju *Atopochara*, które dotychczas nie były opisywane z obszaru Chin.

Praca niniejsza była finansowana przez Polską Akademię Nauk w ramach problemu międzyresortowego Mr II-6.

CONTENTS

Page

	·
troduction	8
Acknowledgements	5
vstematic part	5
Genus Amblyochara Grambast	6
- Palaeontologia Polonica No. 42	

)6
Amblyochara nemegetensis sp. n)7
Genus Atopochara PECK)8
Atopochara ulanensis KYANSEP-ROMASCHKINA)8
Genus Euaclistochara Z. WANG, HUANG and S. WANG)9
Euaclistochara mundula (PECK) Z. WANG et al)9
Genus Gobichara KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO	0
Gobichara caerulea sp. n	0
Gobichara viridis sp. n	1
Genus Harrisichara GRAMBAST	2
Harrisichara cretacea KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO	12
Harrisichara cepaeformis sp. n	13
Genus Lamprothamnium GROVES	14
Lamprothamnium altanulaensis (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) comb. n	14
Genus Latochara Mäni FR	15
Latochara sp.	15
Genus Maedlerisphaera HORN of RANTZIEN	15
Maedlerischargen asseudoulmensis KARCZEWSKA and ZEMBINSKA-TWORZYDŁO	15
Genus Mesocharg GRAMBAST	17
Mesochara manoolica KARCZEWSKA and ZIEMRIŃSKA-TWORZYDŁO	17
Mesonhara stankovitehii Kvanser Romascukina	17
Mesochara valuta (Perk) GRAMBART	18
Mesochara anadaineki sp. n	19
Mesochara grauzinski sp. u	20
Mesochara lugularta en p	20
	-1 27
Mesochara orientalie sp. n	;2)3
Mesochara onemans sp. n	2.5
Interochana sp	24
Minscharz of aritistic Grunner	24 24
$\mu_{\rm HCI}$	
Genus Mangalishara VANSED DOMASCIVINA amond VANCEWSVA and VANSED DOMASCIVINA 1	24 25
Genus Mongolichara Kyansep-Romaschkina emend. Karczewska and Kyansep-Romaschkina	25
Genus Mongolichara Kyansep-Romaschkina emend. Karczewska and Kyansep-Romaschkina	25
Genus Mongolichara KYANSEP-ROMASCHKINA emend. KARCZEWSKA and KYANSEP-ROMASCHKINA	25 25 25 26
Genus Mongolichara KYANSEP-ROMASCHKINA emend. KARCZEWSKA and KYANSEP-ROMASCHKINA	25 25 26 27
Genus Mongolichara KYANSEP-ROMASCHKINA emend. KARCZEWSKA and KYANSEP-ROMASCHKINA	25 25 26 27 27
Genus Mongolichara Kyansep-Romaschkina emend. Karczewska and Kyansep-Romaschkina. 12 Mongolichara gobica (Karczewska and Ziembińska-Tworzydło) Karczewska and Kyansep-Romaschkina 12 Mongolichara aurea (Karczewska and Ziembińska-Tworzydło) Karczewska and Kyansep-Romaschkina 12 Mongolichara costulata Kyansep-Romaschkina 12 Mongolichara fulgida sp. n. 12 Mongolichara goresioides sp. n. 12 Mongolichara goresioides n. 12 Mongolichara provenious p. 12 Mongolichara p. 12 Mongolichara provenious p. 12 Mongolichara provenious p. 12 Mongolichara p. 12 Mongolichara provenious p. 12 Mongolichara p. 12 <t< td=""><td>25 25 26 27 27 28</td></t<>	25 25 26 27 27 28
Genus Mongolichara Kyansep-Romaschkina emend. Karczewska and Kyansep-Romaschkina. 12 Mongolichara gobica (Karczewska and Ziembińska-Tworzydło) Karczewska and Kyansep-Romaschkina 12 Mongolichara aurea (Karczewska and Ziembińska-Tworzydło) Karczewska and Kyansep-Romaschkina 12 Mongolichara costulata Kyansep-Romaschkina 12 Mongolichara fulgida sp. n. 12 Mongolichara grovesioides sp. n. 12 Mongolichara immatura sp. n. 12 Mongolichara tura s	25 25 26 27 27 28 29
Genus Mongolichara KYANSEP-ROMASCHKINA emend. KARCZEWSKA and KYANSEP-ROMASCHKINA. 12 Mongolichara gobica (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara aurea (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara fulgida sp. n. 12 Mongolichara grovesioides sp. n. 12 Mongolichara turnaui sp. n. 12	25 25 26 27 27 28 29 30
Genus Mongolichara KYANSEP-ROMASCHKINA emend. KARCZEWSKA and KYANSEP-ROMASCHKINA. 12 Mongolichara gobica (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara aurea (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara fulgida sp. n. 12 Mongolichara grovesioides sp. n. 12 Mongolichara turnaui sp. n. 12 Mongolichara turnaui sp. n. 12 Mongolichara fulgida sp. n. 12 Mongolichara fulgida sp. n. 12 Mongolichara grovesioides sp. n. 12 Mongolichara fulgida sp. n.	25 25 26 27 27 28 29 30 31
Genus Mongolichara KYANSEP-ROMASCHKINA emend. KARCZEWSKA and KYANSEP-ROMASCHKINA. 12 Mongolichara gobica (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara aurea (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara fulgida sp. n. 12 Mongolichara grovesioides sp. n. 12 Mongolichara turnaui sp. n. 12 Mongolichara turnaui sp. n. 12 Obtusochara cf. lanpingensis Z. WANG, HUANG, S. WANG 12 Conve Backinger Chauptare 12	25 25 26 27 27 28 29 30 31 31
Genus Mongolichara KYANSEP-ROMASCHKINA emend. KARCZEWSKA and KYANSEP-ROMASCHKINA. 12 Mongolichara gobica (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara aurea (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara fulgida sp. n. 12 Mongolichara grovesioides sp. n. 12 Mongolichara turnaui sp. n. 12 Mongolichara turnaui sp. n. 13 Mongolichara cf. lanpingensis Z. WANG, HUANG, S. WANG 14 Menser Steichara GRAMBAST 14 Mongolichara GRAMBAST 14 Mongolichara fulgida sp. n. 14 Mongolichara turnaui sp. n. 14 Mongolichara turnaui sp. n. 14 Mongolichara fulgida sp. n. 14 Mongolichara turnaui sp. n. 14 Mongolichara fulgida sp. n. 14 Mongolichara fulgida sp. n. 14 Mongolichara turnaui sp. n. 14 Mongolichara fulgida sp. n. 14 Mongolichara fulgida sp. n. 14 Mongolichara fulgid	25 25 26 27 27 28 29 30 31 31 32 31
Genus Mongolichara KYANSEP-ROMASCHKINA emend. KARCZEWSKA and KYANSEP-ROMASCHKINA. 12 Mongolichara gobica (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara aurea (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara fulgida sp. n. 12 Mongolichara grovesioides sp. n. 12 Mongolichara turnaui sp. n. 12 Obtusochara KJ 13 Obtusochara Cf. lanpingensis Z. WANG, HUANG, S. WANG 13 Peckichara GRAMBAST 14 Mongolichara praecursoria sp. n. 14	25 25 26 27 28 29 31 31 32 32 31 32 32
Genus Mongolichara KYANSEP-ROMASCHKINA emend. KARCZEWSKA and KYANSEP-ROMASCHKINA. 12 Mongolichara gobica (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara aurea (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara fulgida sp. n. 12 Mongolichara grovesioides sp. n. 12 Mongolichara turnaui sp. n. 12 Mongolichara turnaui sp. n. 12 Obtusochara GRAMBAST 13 Genus Peckichara GRAMBAST 14 Saportanella GRAMBAST 14 Saportanella GRAMBAST 14	25 25 26 27 28 29 30 31 32 32 33 31 32 32 33
Genus Mongolichara KYANSEP-ROMASCHKINA emend. KARCZEWSKA and KYANSEP-ROMASCHKINA. 12 Mongolichara gobica (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara aurea (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara fulgida sp. n. 12 Mongolichara grovesioides sp. n. 12 Mongolichara turnaui sp. n. 12 Mongolichara turnaui sp. n. 12 Obtusochara GI. lanpingensis Z. WANG, HUANG, S. WANG 13 Genus Peckichara GRAMBAST 13 Peckichara graecursoria sp. n. 14 Saportanella GRAMBAST 14 Saportanella nana KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO 14 Saportanella nana KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO 14	25 25 26 27 28 29 31 31 32 33 33 33
Genus Mongolichara KYANSEP-ROMASCHKINA emend. KARCZEWSKA and KYANSEP-ROMASCHKINA. 12 Mongolichara gobica (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara aurea (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara fulgida sp. n. 12 Mongolichara fungatura sp. n. 12 Mongolichara turnaui sp. n. 12 Obtusochara Mädler 12 Obtusochara GRAMBAST 13 Genus Saportanella GRAMBAST 14 Saportanella romaschkinae sp. n. 14 Mongolichara praecursoria sp. n. 14 Mongolichara fulgida sp. n. 14 Mongolichara turnaui sp. n. 14 Mongolichara fulgidas sp. n. 14 Mongolichara fulgidas sp. n. 14 Mongolichara fulgidas sp. n. 14 Mongolichara turnaui sp. n. 14 Obtusochara fulgidas sp. n. 14 Genus Saportanella GRAMBAST 14 Saportanella romaschkinae sp	25 25 26 27 28 29 31 31 32 33 34 33 34
Genus Mongolichara KYANSEP-ROMASCHKINA emend. KARCZEWSKA and KYANSEP-ROMASCHKINA. 12 Mongolichara gobica (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara aurea (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara aurea (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara fulgida sp. n. 12 Mongolichara grovesioides sp. n. 12 Mongolichara immatura sp. n. 12 Mongolichara turnaui sp. n. 12 Obtusochara CI. lanpingensis Z. WANG, HUANG, S. WANG 12 Peckichara graecursoria sp. n. 12 Peckichara praecursoria sp. n. 12 Saportanella GRAMBAST 13 Saportanella RARZEWSKA and ZIEMBIŃSKA-TWORZYDŁO 13 Saportanella nana KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO 14 Saportanella Romaschkinae sp. n. 14 Saportanella romaschkinae sp. n. 15 Saportanella romaschkinae sp. n. 15<	25 25 26 27 28 29 31 32 33 33 34 35 35
Genus Mongolichara KYANSEP-ROMASCHKINA emend. KARCZEWSKA and KYANSEP-ROMASCHKINA. 12 Mongolichara gobica (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara aurea (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara fulgida sp. n. 12 Mongolichara grovesioides sp. n. 12 Mongolichara immatura sp. n. 12 Mongolichara turnaui sp. n. 12 Mongolichara cf. lanpingensis Z. WANG, HUANG, S. WANG 12 Obtusochara GRAMBAST 12 Peckichara praecursoria sp. n. 12 Saportanella GRAMBAST 12 Saportanella RARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO 12 Saportanella RARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO 12 Saportanella GRAMBAST 13 Saportanella GRAMBAST 14 Saportanella Romaschkinae sp. n. 14 Saportanella RARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO 15 Saportanella RARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO 15 Saportanella RARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO 15 Saportanella RARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO 16	25 26 27 28 29 31 31 32 33 34 35 36
Genus Mongolichara KYANSEP-ROMASCHKINA emend. KARCZEWSKA and KYANSEP-ROMASCHKINA. 12 Mongolichara gobica (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara aurea (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara fulgida sp. n. 12 Mongolichara fulgida sp. n. 12 Mongolichara immatura sp. n. 12 Mongolichara turnaui sp. n. 12 Mongolichara cf. lanpingensis Z. WANG, HUANG, S. WANG 12 Obtusochara GRAMBAST 12 Peckichara praecursoria sp. n. 12 Saportanella nana KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO 13 Saportanella nana KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO 13 Saportanella nana KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO 13 Saportanella romaschkinae sp. n. 14 Genus Sphaerochara MÄDLER emend. HORN af RANTZIEN and GRAMBAST 14 Stophanochara GramBAST 14 Stophanochara GramBAST 14 Stophanochara contali sp. n. 14	25 26 27 28 20 31 31 32 33 34 35 36 36
Genus Mongolichara KYANSEP-ROMASCHKINA emend. KARCZEWSKA and KYANSEP-ROMASCHKINA. 12 Mongolichara gobica (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara aurea (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara grovesioides sp. n. 14 Mongolichara immatura sp. n. 14 Mongolichara turnaui sp. n. 14 Mongolichara turnaui sp. n. 14 Obtusochara Cf. lanpingensis Z. WANG, HUANG, S. WANG 12 Genus Peckichara GRAMBAST 14 Saportanella nana KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO 14 Saportanella nana KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO 15 Saportanella romaschkinae sp. n. 14 Genus Sphaerochara MÄDLER emend. HORN af RANTZIEN and GRAMBAST 14 Stephanochara GRAMBAST 14 Stephanochara GramBAST 15 Stephanochara Gastelii sp. n. 14 Stephanochara Castelii sp. n. 14 Mongolichara costelii sp. n. 14	25 26 27 28 20 31 32 33 34 35 36 37
Genus Mongolichara KYANSEP-ROMASCHKINA emend. KARCZEWSKA and KYANSEP-ROMASCHKINA. 12 Mongolichara gobica (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara gobica (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KARCZEWSKA and KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara costulata KYANSEP-ROMASCHKINA 12 Mongolichara fulgida sp. n. 12 Mongolichara fundatura sp. n. 12 Mongolichara turnaui sp. n. 12 Mongolichara f. lanpingensis Z. WANG, HUANG, S. WANG 12 Obtusochara G. lanpingensis Z. WANG, HUANG, S. WANG 12 Genus Peckichara GRAMBAST 12 Saportanella GRAMBAST 12 Saportanella romaschkinae sp. n. 12 Saportanella romaschkinae sp. n. 12 Genus Saportanella GRAMBAST 12 Saportanella romaschkinae sp. n. 12 Genus Shaerochara Mädler emend. HORN af RANTZIEN and GRAMBAST 13 Saportanella romaschkinae sp. n. 14 Genus Shaerochara GRAMBAST 14 Genus Shaerochara Mädler emend. HORN af RANTZIEN and GRAMBAST 14 Genus Stephanochara GRAMBAST 14	25 25 26 27 28 29 31 31 32 33 33 34 35 36 36 37 30

INTRODUCTION

The gyrogonites of Charophyta described in the present paper were recovered, together with ostracodes from the rocks of the Nemegt Formation in the Nemegt Basin (the localities Nemegt and Altan Ula IV), in 1970 and 1971 by members of the Polish-Mongolian Palaeonto-logical expeditions to the Gobi Desert (KIELAN-JAWOROWSKA and BARSBOLD 1972).

The deposits of the Nemegt Formation are poorly cemented, variegated sandstones, varying in colour from yellowish to grey-brown, more seldom red or orange, containing intercalations of olive coloured mudstones and clays. The charophytes and ostracodes have been found exclusively in the latter rocks. The Nemegt Formation is believed to be of ?Upper Campanian, and ?Lower Maastrichtian age (GRADZIŃSKI *et al.* 1977) as estimated from stages of evolution of the vertebrate and invertebrate assemblages present.

Samples for micropalaeontological investigations were collected in two localities, from the successive mudstone and claystone intercalations of the Nemegt Formation sandstones exposed in steep walls of the sayrs. The localities Nemegt and Altan Ula are 60 km apart; the localization is shown in figs 1–4. In most samples the gyrogonites of Charophyta occurred together with ostracodes (SZCZECHURA 1979). Not all the samples were yielding in the same degree, some were barren, but generally the material obtained was very abundant in gyrogonites. The richest was the sample Nemegt no. 100 (figs. 3 and 4); this was also the largest sample (ca. 20 kg) derived from the deposits most abounding in charophyte gyrogonites and ostracode carapaces. The remaining samples were 1 kg each.

The clays and mudstones, which have been deposited in stagnant or slowly flowing water within an alluvial plain (GRADZIŃSKI *et al.* 1977), contain autochtonous charophyte oogonia. The lack of transport is indicated by the excellent preservation of the gyrogonite ornamentation and by strong differentiation of their size, as both, large (ca. 750 μ m) and small (ca. 250 μ m) specimens are present. The assemblage of the smallest oogonia will be the subject of a separate paper.

The charophytes from the same localities were described by us earlier (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO, 1970) but the material then at our disposal was much poorer than the present one both in specimens and taxa. The presently described numerous and perfectly preserved gyrogonites extend the knowledge on the Upper Cretaceous Charophyta of the Gobi Desert.

The gyrogonites of Charophyta from Mongolia were also described by KYANSEP-RO-MASCHKINA (1975). That paper concerns not only the Charophyta from the Upper Cretaceous of the Nemegt Basin but also those from the Upper Jurassic of the Mongolian Altai and western Mongolia, Lower Cretaceous of north-eastern Mongolia and lower part of the Upper Cretaceous (Albian-Cenomanian) of the eastern Gobi.

Thirty four species are recorded in the present paper; their occurrence in the particular samples is presented in table 1. In our paper from 1970, thirteen species were recorded; of these the representatives of Alistochara cf. bransoni PECK, Maedleriella monilifera (PECK and RECKER) GRAMBAST and Sphaerochara verticillata (PECK) PECK, occurring as single specimens, have not been found in the present material. Of the seven species described by KYANSEP-ROMASCHKINA (1975) from the Upper Cretaceous of the Nemegt Basin, four are also recorded in the present material. These are Mongolichara gobica (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO, 1970) KYANSEP-ROMASCHKINA, 1975 (M. deplanata KYANSEP-ROMASCHKINA, 1975); Mongolichara costulata KYANSEP-ROMASCHKINA, 1975; Mesochara stankevitchi KYANSEP-ROMASCHKINA, 1975 and Atopochara ulanensis KYANSEP-ROMASCHKINA, 1975. The concept of the species Mesochara texensis KYANSEP-ROMASCHKINA, 1975 and Mesochara oviformis KYANSEP-ROMASCHKINA, 1975 is very wide; in our opinion each of these includes more than one species. The species Mongolichara bugintsavica KYANSEP-ROMASCHKINA, 1975 belongs to the genus Lamprothamnium (see KARCZEWSKA and KYANSEP-ROMASCHKINA 1979).

According to KYANSEP-ROMASCHKINA (1975) the species recorded by her are derived from deposits of two "svitas", the barungoyotskaya svita and the nemegetinskaya svita; the assemblages of Charophyta from both svitas are the same. According to GRADZIŃSKI *et al.* (1977) the concept of the svita of the Soviet authors is not the same as that of formation, as applied by GRADZIŃSKI and JERZYKIEWICZ (1972) in Mongolia. This disagreement is especially distinct when the vertical ranges of the Nemegt Formation and the nemegetinskaya svita, or

Fig. 1

Map of locality Altan Ula IV. The circles denote micropaleontological samples collected in Central Sayr; the triangles the samples collected in Eagle Sayr (after GRADZIŃSKI et al. 1969, emended). The points at the map of Mongolia indicate: 1 — locality Altan Ula IV, 2 — locality Nemegt.

Fig. 2

Geological profile of Upper Cretaceous (Nemegt Formation) sediments at locality Altan Ula IV. The circles and triangles denote the micropaleontological samples. For location of the samples see Fig. 1 (after GRADZIŃSKI et al. 1969, emended),

the Barun Goyot Formation and the barungoyotskaya svita are compared. According to GRA-DZIŃSKI et al. 1977 the upper part of the barungoyotskaya svita sensu SOCHAVA (1975) is the equivalent of the Nemegt Formation. In this upper part of the barungoyotskaya svita (sensu SOCHAVA 1975) in the Bugeen Tsav and Altan Ula I localities, KYANSEP-ROMASCHKINA (1975) has found gyrogonites of Charophyta identical with those occurring in the deposits of the nemegetinskaya svita and with those described in the present paper from the Nemegt Formation.

Fig. 3

Map of the northern part of locality Nemegt. Micropaleontological samples indicated by triangles (after GRADZIŃSKI and JERZYKIEWICZ 1972, emended).

This seems to confirm the suggestion of GRADZIŃSKI et al. (1977) that the Nemegt Formation is present also in the localities Bugeen Tsav and Altan Ula I. Thus, the Upper Cretaceous deposits from Bugeen Tsav, Ulan Bulak, Altan Ula I, Altan Ula IV and Nemegt are time equivalents.

Fig. 4

Geological profile of Upper Cretaceous Nenegt Formation sediments at northern part of Nemegt locality. The triangles denote the micropaleontological samples. For location of the samples see Fig. 3 (after GRADZIŃSKI and JERZYKIEWICZ 1972, emended). The sediments denoted as the passage series represent the lowermost beds of the Nemegt Formation, intermediate in some respects between the Barun Goyot and Nemegt formations.

In November 1978, J. KARCZEWSKA met N. P. KYANSEP-ROMASCHKINA in Leningrad, and discussed the problems concerning the generic status of the species described by KAR-CZEWSKA and ZIEMBIŃSKA-TWORZYDLO (1970), which were recombined by KYANSEP-RO-MASCHKINA (1975). Some conclusions of the discussion are presented below:

— Tectochara gobica KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO 1970, recte Mongolichara gobica (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO) KYANSEP-ROMASCHKINA, 1975, is conspecific with Mongolichara deplanata KYANSEP-ROMASCHKINA, 1975. M. deplanata is the junior synonym of M. gobica.

— Mongolichara aurea (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO, 1970) KYANSEP-RO-MASCHKINA, 1975, formerly Tectochara aurea KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO, 1970, should be included in Mongolichara.

— The remaining species described by KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO (1970) included in *Mongolichara* by KYANSEP-ROMASCHKINA (1975) cannot be assigned to this genus. These are: Saportanella nana KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO, 1970 and Lamprothamnium altanulaensis (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO, 1970) comb.n. For details on the genus Mongolichara see KARCZEWSKA and KYANSEP-ROMASCHKINA (1979). — Mesochara voluta (PECK) GRAMBAST, described by us in 1970, is a species distinct from

M. stankevitchii KYANSEP-ROMASCHKINA, 1975 and cannot be considered the synonym of the latter.

The occurrence in the present material of the gyrogonites of Charophyta from the group Clavatoraceae, represented by the species Atopochara ulanensis KYANSEP-ROMASCHKINA, 1975 is noteworthy. The genus Atopochara was described from the Lower Cretaceous deposits of North America (PECK 1938); it was later recorded from Upper Cretaceous deposits from USA, Europe, North Africa, Syria, Peru (PECK 1957, GRAMBAST 1961, 1968). According to GRAMBAST (1967, 1968, 1969 and 1974) in Atopochara it is possible to trace the successive evolutionary stages, which make possible to precisely date the Cretaceous deposits.

The Clavatoraceae are rare in the present material; also KYANSEP-ROMASCHKINA has found in the Nemegt Formation only few specimens, on which her new species Atopochara ulanensis is based. According to GRAMBAST (1974) one stage of the evolutionary lineage of Atopochara is Atopochara restricta GRAMBAST which is indicative of the Albian. This species is a direct ancestor of the Cenomanian Atopochara multivolvis PECK. Neither the diagnosis nor the description of A. restricta was given; basing on the drawing and discussion in GRAM-

Locality and samples numbers	_	A	LT	A	NU	JLA	1	v		NI	EM	EG	T
	C	Cent	ral	Sa	y r	E	agle	e Sa	ıyr			_	
Species	1	2	5	6	11	1	4	5	7	2a	3	7	100
Amblyochara agathae sp. n. Amblyochara nemegetensis sp. n.	+	+	+ 	+ -	+ -	_	+	+ -	-	 +		+ 	+ +
Atopochara ulanensis KYANSEP-ROM.		-	-	_	-		-	_	_	_	+	-	+
Euaclistochara mundula (PECK) Z. WANG, HUANG and S. WANG	+		-	_	-	-	+	+	-	-	_		+
Gobichara caerulea sp. n. Gobichara viridis sp. n.	-	_	+ -	_	_	_	-	+ +	-	+ +	-	-	+ +
Harrisichara cretacea KARCZ. and ZIEMB. Harrisichara cepaeformis sp. n.	+ -	-	-		_	_	+++	++	Ξ	+ +	+ -	_	+ +
Lamprothamnium altanulaensis (KARCZ. and ZIEMB.) comb. n.	+	+	+	-	-	_	_	+	+	+	+-	+	+
Latochara sp.	-	_	-				-	-			_		+
Maedlerisphaera pseudoulmensis KARCZ. and ZIEMB.		+	+	+	-		+	+	-	+	+	+	+
Mesochara mongolica KARCZ. and ZIEMB. Mesochara stankevitchii KYANSEP-ROM. Mesochara voluta (PECK) GRAMBAST Mesochara gradzinskii sp. n. Mesochara inflata sp. n. Mesochara luculenta sp. n. Mesochara obventicia sp. n. Mesochara orientalis sp. n. Mesochara sp.		1 + 1 1 1	+ + +	++	+ - + +		+ - + + + +	++++++		++-++++++++++++++++++++++++++++++++++++	+		+++++++++++++++++++++++++++++++++++++++
Microchara cf. cristata GRAMBAST	_	_	_	_		_	+	+	_	+	+	-	+
Mongolichara gobica (KARCZ. and ZIEMB.) KYANSEP-ROM. Mongolichara aurea (KARCZ. and ZIEMB.) KYANSEP-ROM. Mongolichara costulata KYANSEP-ROM. Mongolichara fulgida sp. n. Mongolichara grovesioides sp. n. ?Mongolichara immatura sp. n. Mongolichara turnaui sp. n.	+ + + + + + + + + + + + +	+ +	+ - + + +	+		? + - + - + - +	+++-+++++++++++++++++++++++++++++++++++	+ + + + + + +		+++++++++++++++++++++++++++++++++++++++	++++++	+ - + + + -	+++++++++++++++++++++++++++++++++++++++
Obtusochara cf. lanpingensis Z. WANG, HUANG and S. WANG	_	-		-	-	_	-	-	_		-	-	+
Peckichara praecursoria sp. n.	-	-		_	-	-	?	+		-	?	-	+
Saportanella nana KARCZ. and ZIEMB. Saportanella romaschkinae sp. n.	+ +	+	+++	+++++	++	_	+?	+	_	++	+++	+	+ +
Sphaerochara jacobii sp. n.	+	_	+	-	+		+	+	-	-		-	+
Stephanochara castelii sp. n.	_	-	-	-		-	-	+	-	_	_		+
		-		-									

Table 1

C 1 1 trade to dea NT- \sim

The occurrence of *Atopochara* in the Upper Cretaceous deposits of Mongolia is quite peculiar, as it is missing from the Upper Cretaceous deposits from China, which yielded the assemblages described by Z. WANG 1978; Z. WANG *et al.* (1976); S. WANG *et al.* (1978). The composition of genera of the Upper Cretaceous charophyte assemblages from Mongolia and China is similar — the differences occur at a specific level. It is interesting that we have recorded in Mongolia the genus *Euaclistochara*, represented in our material by *E. mundula* (PECK) Z. WANG, HUANG and S. WANG, 1976. This genus has been erected by the Chinese authors to include gyrogonites in which the apical part has an apical pore. This is a conservative feature typical of the Triassic and Jurassic genera. In North America and China *E. mundula* occurs in the Albian and Aptian deposits. A few other species from our material have equivalents (the same or similar species) in the Chinese assemblages. In several cases it was difficult to establish the true relations between the Mongolian and the Chinese species because of poor illustrations in Chinese papers.

Two genera of Charophyta dominate in the present material; they are represented by the highest number of both specimens and species. These are: *Mesochara* and *Mongolichara* the genus erected by KYANSEP-ROMASCHKINA (1975), not recorded so far, from the outside of Mongolia (KARCZEWSKA and KYANSEP-ROMASCHKINA 1979). According to these authors *Mongolichara* is an ancestor, or stays close to *Peckichara* GRAMBAST, 1957, which is represented by numerous species and widely distributed in the Lower Tertiary deposits.

The conventional taxonomy of fossil oogonia of Charophyta used in the present paper is generally accepted as an artificial one. In our opinion the application of natural taxonomy to the description of fossil gyrogonites of the Charophyta is not possible, since the taxonomy of the recent Charophyta has been based mostly on the vegetative parts.

The specimens described in the present paper are housed in the Institute of Palaeobiology, Polish Academy of Sciences, Warsaw, abbreviated as ZPAL.

ACKNOWLEDGEMENTS

The authors want to express their gratitude to Prof. Z. KIELAN-JAWOROWSKA, the head of the Institute of Palaeobiology, Polish Academy of Sciences in Warsaw, for all the help she has provided during our work on this subject. Thanks are also due to Prof. R. GRADZIŃSKI (Institute of Geological Sciences, Polish Academy of Sciences in Cracow) for giving us an access to the stratigraphic columns and for consultations, and to Dr. E. TURNAU (the same Institute) for translation of this text. Special thanks are due to Prof. G. MARTINSON and Dr. N. P. KYANSEP-ROMASCHKINA (Institute of Limnology, Academy of Sciences, USSR, Leningrad) for their kind permission to examine the Charophyta collection from the Upper Cretaceous of the Nemegt Basin, housed in the Institute of Limnology in Leningrad.

The SEM micrographs have been produced in the Laboratory of Electron Microscopy at the Nencki Institute of the Experimental Biology, Polish Academy of Sciences. The transmitted-light micrographs have been made by Mr. M. DZIEWIŃSKI in the Institute of Palaeobiology, Polish Academy of Sciences.

SYSTEMATIC PART

The terminology and abbreviations determining the shape and dimensions of the gyrogonites are the same as in KARCZEWSKA and ZIEMBIŃSKA-TWORZYDLO (1970 and 1972):

LPA - length of the polar axis of the gyrogonite

LED - largest equatorial diameter of the gyrogonite

 $\begin{array}{ll} \text{ISI} & -\text{ isopolarity index } \frac{\text{LPA}}{\text{LED}} \times 100 \\ \text{AND} & -\text{ distance from the apical poles to the LED as calculated along the polar axis} \\ \text{ANI} & -\text{ anisopolarity index } \frac{\text{AND}}{\text{LPA}} \times 100 \\ \text{EA} & -\text{ equatorial axis} \end{array}$

Numb. conv. — number of convolutions in the lateral view Width conv. at EA — width of the spirals at the equatorial axis

101

The shape terminology:

	191
prolate spheroidal	100-114
subprolate	114-133
prolate	133-200
	ANI
subovoidal	29-43
ellipsoidal	43-57
subobovoidal	57-71

Genus Amblyochara GRAMBAST, 1962

Type species: Amblyochara begudiana GRAMBAST, 1962, France, Upper Cretaceous.

Amblyochara agathae sp. n. (pl. 22: 1, 4, 5, 8)

Holotype: ZPAL MgChar-III/47; pl. 22:8. Type horizon: Upper Cretaceous, Nemegt Formation. Type locality: Nemegt, Nemegt Basin, Gobi Desert. Diricities of the nemet method is a factor of the development of the new factor of the development of the new factor of the development of the new factor of the development o

Derivation of the name: agathae - Lat. Agatha from the name Agata of the daughter of the second author.

Diagnosis. — Gyrogonite middle-sized, prolate spheroidal to subprolate and ellipsoidal, with broadly rounded summits and bases. Cellular spirals concave or flat, delimited by low and blunt intercellular ridges. Cellular spirals continue onto the summit without changing their width and shape, but in the apical centre distinctly thinner. Basal plug wider than thick.

Material. - About 500 well preserved specimens.

Measured gyrogonites of Amblyochara agathae sp. n.

ZPAL MgChar-III/	LPA in μm	LED in µm	ISI	AND in μm	ANI	Number conv,	Width conv. in µm	Thick. conv. in μm
332	567	500	113	268	47	7	85	-
337	584	510	114	309	52	9	78	_
334	617	518	119	302	49	8	86	_
336	618	510	121	340	55	7	90	
47	620	540	114	320	51	8	80	
333	620	544	114	316	51	8	86	-
331	637	561	113	316	50	8	85	_
226	639	571	111	300	47	7	90	84
227	645	572	112	330	51	8	120	81
335	656	566	116	32 3	49	7	93	_
Range:	567-656	500-572	111-121	268-340	47-52	7–9	78-120	81-84

Description. — Gyrogonites middle-sized, prolate spheroidal to subprolate (ISI 106— 120) and ellipsoidal (ANI 38-52), with broadly rounded summits and bases; length from 522 to 724 μ m, width from 479 to 640 μ m. Seven to nine convolutions visible in lateral view. Cellular spirals wide (80–107 ν m), on most specimens concave and shallow, delimited by low and narrow intercellular ridges. Cellular spirals continue onto somewhat flattened summit without changing their width and shape to meet in centre along an irregular line or in a point slightly raised above the general surface. In the basal part cellular spirals as wide as at the equator or somewhat widened around the basal pore; tips ending truncately or roundedly, in most specimens surrounding a distinctly pentagonal outer opening of the basal pore. Equatorial angle 10 to 15°.

In longitudinal section, cellular spirals thick, with two calcification zones; the inner layer dark, thin, the outer light-coloured and three times thicker; laminate texture invisible. In the apical part cellular spirals distinctly thinner than at the equator. Basal pore with outer opening in the bottom of a pentagonal depression, pore cone-shaped, basal plug wider than thick. Oospore membrane represented by black line along interior wall of spirals (pl. 1: 5).

Remarks. — Amblyochara agathae sp. n. is most similar to Amblyochara peruviana GRAM-BAST 1967 described from the Upper Cretaceous deposits of Peru, but it differs in being much smaller. From A. latifasciata (PECK) GRAMBAST, 1962, described by PECK (1957) from the Albian deposits of North America it differs in having smaller size and shorter canal of the basal pore (seen in longitudinal section); also, in A. agathae, the specimens with concave cellular spirals predominate.

Occurrence. — Upper Cretaceous (Nemegt Formation); Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

Amblyochara nemegetensis sp. n. (pl. 39:2-5, 8)

Holotype: ZPAL MgChar-111/139; pl. 39:4. Type horizon: Upper Cretaceous, Nemegt Formation. Type locality: Nemegt, Nemegt Basin, Gobi Desert. Derivation of the name: nemegetensis — occurring in the Nemegt Basin.

Diagnosis. — Gyrogonites middle-sized, subprolate and ellipsoidal with broadly rounded and flat summits and slightly protruding bases. Cellular spirals continue onto the summit without changing their shape and size; in the apical centre these are slightly thinner than at the equator.

Material. — About 600 well preserved specimens.

Width Thick. ZPAL LPA ISI LED AND ANI Number conv. conv. MgChar-III/ in µm in µm in µm conv. in µm in µm 129 232 606 468 240 40 8 72 45 125 493 50 8 339 617 312 81 ----9 297 47 341 629 476 132 85 ----139 650 500 130 320 49 10 80 338 680 537 127 320 47 8 96 _ ____ 680 120 323 47 8 95 340 566 9 342 705 510 139 290 41 88 343 710 561 127 340 48 9 93 _ 233 720 540 133 300 41 8 84 60 344 748 612 122 374 50 8 102 _ 120-139 Range: 606-748 468-612 240-374 41-50 8-10 72-120 45-60

Measured gyrogonites of Amblyochara nemegetensis sp. n.

Description. — Gyrogonites middle-sized, subprolate (151 120–139) and ellipsoidal (ANI 40-50), with broadly rounded and flat summits and slightly protruding bases; length from 606 to 748 μ m, width from 468 to 612 μ m. Eight to ten convolutions visible in lateral view. Cellular spirals wide (72–102 μ m), more or less concave, delimited by low and sharp intercellular ridges. Cellular spirals continue onto summit without changing their size and shape and meet in the apical centre along a short irregular line. In the basal part cellular spirals slightly widened; outer opening of the basal pore distinctly pentagonal. Equatorial angle about 10°.

In longitudinal section, cellular spirals are of an average thickness (about 45-60 μ m), in the apical part they have the same thickness as at the equator. Fructificational wall preserved imperfectly and only locally.

Remarks. — Amblyochara nemcgetensis sp. n. is most similar to Amblyochara agathae sp. n. from which it differs in having more elongate shape, more protruding bases and cellular spirals which are not narrower in the apical part. Amblyochara nemegetensis is also similar to Amblyochara subciensis HUANG and XU, 1978 from which it differs in having more elongated shape and somewhat smaller dimensions.

Occurrence. — Upper Cretaceous (Nemegt Formation): Nemegt and Altan Ula IV, Nemegt Basin Gobi Desert

Genus Atopochara PECK, 1938

Type species: Atopochara Peck, 1938, North America, Lower Cretaceous.

Atopochara ulanensis KYANSEP-ROMASCHKINA, 1975 (pl. 25:1a-c; pl. 31:1a-c, 2a-c, 3)

1975. Atopochara ulanensis KYANSEP-ROM.: KYANSEP-ROMASCHKINA; 190-191, pl. 2a-b; pl. 3:1, 2.

Material. - Four specimens.

Measured specimens of Atopochara ulanensis KYANSEP-ROMASCHKINA

ZPAŁ MgChar-IU/	LPA in µm	LED in µm	ISL	AND in µm	ANI
53	1000	850	117	450	45
105	1000	820	122	440	44
39	1050	900	116	500	48
68	1050	1050	100	500	44
Range:	1000-1050	820-1050	100-122	440-500	44-48

Description. — See KYANSEP-ROMASCHKINA (1975). Representatives of the species discussed undoubtedly fall within the range of variability of *A. ulanensis* KYANSEP-ROM.

Remarks. — Atopochara ulanensis from our material is represented only by four variably preserved specimens. One, very well preserved specimen (pl. 31: 2a-c) makes the precise specific assignment possible. In the remaining gyrogonites the utricle is destroyed in various degree. One specimen completly devoid of sculpture (pl. 31: 3) is almost identical with that illustrated by KYANSEP-ROMASCHKINA (1975, pl. 3: 2) as the gyrogonite of this species.

Occurrence. — Upper Cretaceous (Nemegt Formation): Nemegt, Nemegt Basin, Gobi Desert (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDLO, present paper). Upper Cretaceous (Nemegt Formation): Ulan Bulak (KYANSEP-ROMASCHKINA 1975)

Euaclistochara Z. WANG, HUANG and S. WANG, 1976

Type species: Euaclistochara Infengensis Z. WANG, HUANG and S. WANG, 1976, China, Upper Jurassic.

Remarks. — The genus *Euaclistochara* has been erected by the Chinese authors to include gyrogonites in which the morphology of the apical part was such as in Euaclistochara mundula and in related species. E. mundula was described by PECK in 1941 as Aclistochara mundula; later, it was included, also by PECK (1957), to Stellatochara HORN af RANTZIEN because of the apical part morphology of these gyrogonites. Z. WANG (1978) remarked that there are essential differences in the morphology of the apical part between the gyrogonites of Stellatochara and "Aclistochara mundula". In the opinion of Z. WANG (1978) the latter species should be included in a new genus, but this was not done in his paper. Instead, he included "A. mundula" in Porochara, with a question mark, referring to GRAMBAST 1961, who, according to Z. WANG, used this new combination. However, GRAMBAST (1961) did not formally transfer Stellatochara mundula (PECK) PECK to another genus. Z. WANG et al. (1976) erected the genus Euaclistochara; spheroidal and ovoid gyrogonites with truncated apex, rounded bases, concave cellular spirals and sharp intercellular ridges were included. Most important diagnostically is, according to Z. WANG et al., the morphology of the apical part, which is different than in Stellatochara and Porochara. In "Aclistochara mundula", the cellular spirals turn strongly at the apex and bend down abruptly into the apical pore forming a deep and wide canal. Z. WANG (1978) suggested that a new genus should be erected to include gyrogonites in which the apical part was similar to that of "Aclistochara mundula", and as such genus was already created by Z. WANG et al. (1976), we suppose that the paper of 1978 had been written earlier than that published in 1976.

The difference between the apical part of gyrogonites *Stellatochara* and those of "*Aclistochara mundula*" was noticed already in 1954 by HORN af RANTZIEN, who considered the lack of raised tips of the cellular spirals at the apex in the latter species and lack of the typical beak around the apical pore to be important features.

In our opinion, the difficulties in the generic assignment of "Aclistochara mundula" are due to the lack of precision in descriptions of the gyrogonite apical part. We think that Z.WANG et al. (1976) were right to erect a new genus including the forms possessing the apical part like that in "Aclistochara mundula". However, the diagnosis of this genus is not very plain and only discussion and description make it clear that the genus Euaclistochara is important.

The morphology of the apical part in the three close genera is as follows:

In *Stellatochara* the cellular spirals rise abruptly at the apex changing the course to a higher angle, without changing the width and shape; they form a distinct beak. In longitudinal section, a cylindrical canal surrounded by straight cellular spirals, as wide as at the equator is visible.

In *Porochara* the gyrogonites possess a flat apex with the pentagonal apical pore situated at the same level as the endings of the surrounding spirals. The cellular spirals neither rise nor bend down at the apex.

In *Euaclistochara* the cellular spirals reach the margin of the apical part without changing their shape or dimensions. In the apical part, close to the margin, these become narrower but do not rise, making a turn along the margin and bend down abruptly to form the cylindrical apical canal. In longitudinal section, in the apical part, the cellular spirals surrounding the canal taper strongly to 1/3 of the equatorial width.

Euaclistochara mundula (PECK, 1941) Z. WANG, HUANG and S. WANG, 1976 (pl. 38:1-6)

1941. Aclistochara mundula РЕСК; РЕСК: 291, pl. 42:7-11. 1957. Stellatochara mundula (РЕСК) РЕСК; РЕСК: 29-30, pl. 3:25-35. 1976. Euaclistochara mundula (PECK) Z. WANG et al.; Z. WANG, HUANG and S. WANG; 71. 1978. Porochara? mundula (PECK) GRAMBAST; Z. WANG: p. 71, pl. 2:17-26.

Material. — About 450 well preserved specimens.

Description. — Gyrogonites small, subprolate to prolate (ISI 125—145) and subovoidal, ellipsoidal to subovoidal (ANI 42-59) with flat summits and broadly rounded bases; length

ZPAL MgChar-III/	LPA in µm	LED in µm	ISI	AND in µm	ANI	Numb. conv.	Width conv. at EA in µm	Thick. conv. in μm
394	340	282	121	144	43	9	34	
395	350	268	130	148	42	9	46	_
396	374	289	129	183	49	8	36	
46	410	320	128	200	49	10	45	-
170	441	358	123	197	45	9	49	
398	459	351	131	272	59	10	52	
400	462	377	124	212	46	9	59	_
169	464	327	142	235	51	9	49	_
397	479	362	133	246	53	10	59	_
399	502	358	145	221	44	10	54	-
Range:	340-502	268-362	121-145	144-272	42-59	8-10	34-59	_

Measured gyrogonites of Euaclistochara mundula (PECK) Z. WANG et al.

from 340 to 502 μ m, width from 279 to 377 μ m. Eight to ten convolutions visible in lateral view. Cellular spirals concave, separated by sharp and narrow intercellular ridges. At the equator the spirals are 34 to 60 μ m wide. Cellular spirals reach the periphery of the apical part without changing their shape and width. In the apical periphery they taper distinctly and turn, then bend down sharply into the summits opening. Cellular spirals, as a rule, continue onto the base without changing their shape and size, in some specimens slightly widened around the basal pore. Outer opening of the basal pore small, situated at the same level as the surrounding spirals. Equatorial angle about 10°.

In longitudinal section, two calcification zones are visible; the inner one darker, very thin, fine-crystalline, the outer light-coloured, thicker and slightly laminated. In the apical periphery, cellular spirals narrow and bend sharply downward, forming distinct cylindrical canal. Basal plug thin and flat. Fructificational wall preserved imperfectly and only locally.

Remarks. — The specimens of *E. mundula* (PECK) Z. WANG *et al.* from Mongolia do not differ in any important respect from those described from America (PECK, 1941, 1957) and China (Z. WANG *et al.* 1978).

Occurrence. — Aptian and Albian: North America, China. Upper Cretaceous (Nemegt Formation): Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

Genus Gobichara KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO, 1972

Type species: Gobichara deserta KARCZ. and ZIEMB., 1972, Mongolia, Lower Tertiary.

Gobichara caerulea sp. n. (pl. 22: 2, 3, 6, 7)

Holotype: ZPAL MgChar-III/29; pl. 22:7.

Type horizon: Upper Cretaceous, Nemegt Formation. Type locality: Nemegt, Nemegt Basin, Gobi Desert. Derivation of the name: Lat. caeruleus = blue.

Diagnosis. --- Gyrogonites middle-sized, prolate and subovoidal to ellipsoidal, with rounded to slightly protruding summits and conically protruding bases. In the apical periphery cellular spirals slightly narrower and somewhat thinner than at the equator; apical junction

ZPAL MgChar-III/	LPA in µm	LED in µm	JSI	AND in μm	ANI	Numb. conv.	Width conv. at EA in µm	Thick conv. in μm
235	600	420	143	240	40	7	83	50
364	629	425	147	289	46	9	85	-
363	634	428	149	290	46	9	85	_
367	648	450	144	326	50	8	86	_
29	680	450	151	340	50	9	90	_
368	680	442	154	318	47	10	73	~
362	680	474	144	306	45	8	93	~
365	680	510	133	300	44	8	92	-
366	680	486	139	297	44	8	102	
361	686	493	140	318	46	8	85	
Range:	600686	420-510	133-154	240-326	40-50	7-10	73-102	50

Measured gyrogonites of Gobichara caerulea sp. n.

in form of a very short line. In the basal part cellular spirals as wide as at the equator. Basal pore with pentagonal outer opening, surrounded by the prolonged basal tips of cellular spirals.

Material. — Eighteen well preserved specimens.

Description. — Gyrogonites middle-sized, prolate (ISI 133-154) and subovoidal to ellipsoidal (ANI 40-50), with rounded to slightly protruding summits and conically protruding bases; length from 600 to 686 μ m, width from 420 to 510 μ m. Seven to ten convolutions visible in lateral view. Cellular spirals wide (73-102 µm), concave, delimited by distinct and narrow intercellular ridges. In the apical periphery cellular spirals slightly narrower, or as thick as at the equator, uniting in a point or along a short, slightly zigzagged line. Basal pore with outer opening distinctly pentagonal, surrounded by the prolonged basal tips of cellular spirals. Equatorial angle about 15°.

In longitudinal section, cellular spirals of an average thickness (about 50 μ m); in the apical part they are as thick or somewhat thinner, than at the equator. Basal part cone-shaped, basal plug thin. Oospore membrane represented by black line along interior walls of spirals.

Remarks. — Gobichara caerulea sp. n. is most similar to Gobichara nigra KARCZ. and ZIEMB., 1972 but is larger, has less protruding base and lacks the secondary ridges.

Occurrence. — Upper Cretaceous (Nemegt Formation): Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

> Gobichara viridis sp. n. (pl. 26:4, 7, 9, 11)

Holotype: ZPAL MgChar-III/85; pl. 26:7. Type horizon: Upper Cretaceous, Nemegt Formation. Type locality: Nemegt, Nemegt Basin, Gobi Desert. Derivation of the name: Lat. viridis = green.

Diagnosis. — Gyrogonites small to middle-sized, subprolate to prolate and subovoidal to ellipsoidal, with rounded summits and protruding bases. Cellular spirals concave, wide, continue onto the summit without changing their shape and size. In the basal part, cellular

spirals as wide as at the equator. Outer opening of the basal pore pentagonal. Basal plug thin. Material. — Twenty well preserved specimens.

Description. — Gyrogonites small to middle-sized, subprolate to prolate (ISI 125-142) and subovoidal to ellipsoidal (ANI 41-48), with rounded summits and protruding bases; length from 442 to 527 μ m, width from 340 to 394 μ m. Eight to ten convolutions visible in lateral view. Cellular spirals concave, wide (44-66 μ m), continue onto the summit without changing their shape and size; in the apical centre these join each other along a short, irregular line. In the basal part cellular spirals as wide as at the equator, tips ending truncately, surrounding the outer opening of the basal pore. Equatorial angle about 15°.

In longitudinal section, in the apical part cellular spirals the same thickness as at the equator. Basal plug thin, closing a short canal of the basal pore.

Remarks. — Gyrogonites of *Gobichara viridis* sp. n. are most similar to those of *Gobichara nigra* KARCZ. and ZIEMB., especially to the specimen without secondary ridges (see KAR-CZEWSKA and ZIEMBIŃSKA-TWORZYDŁO, 1972, pl. 14: 3, 4), from which they differ in being somewhat larger.

Occurrence. — Upper Cretaceous (Nemegt Formation): Nemegt, and Altan Ula IV, Nemegt Basin, Gobi Desert.

ZPAL MgChar-III/	LPA in µm	LED in µm	ISI	AND in µm	ANI	Numb. conv.	Width conv. at EA in µm	Thick. conv. in μm
369	442	340	130	204	46	9	44	
370	476	360	133	197	41	8	64	
371	493	374	132	221	45	8	64	
372	493	394	125	238	48	10	58	
373	510	362	141	2.40	47	10	58	
220	510	360	142	218	43	8	60	32-40
85	525	367	142	230	44	9	66	
374	527	384	137	224	43	8	61	
Range:	442-527	340-394	125-142	197-240	41-48	8-10	44-66	

Measured gyrogonites of Gobichura viridis sp. n.

Genus Harrisichara GRAMBAST, 1957

Type species: Harrisichara vasiformis (REID and GROVES, 1921) GRAMBAST, 1957, England, Eocene.

Harrisichara cretacea KARCZ. and ZIEMB., 1970 (pl. 36:1, 3, 4, 6)

1970. Harrisichara cretacea KARCZ. and ZIFMB.; KARCZIWSKA and ZIFMBIŃSKA-TWORZYDLO: 128-129, pl. 32: 4; fig. 3.

Material. — About 40 well preserved specimens.

Description. — See KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO (1970). It may be added herein that the gyrogonites of this species from the present material display greater variability in comparison with those described by us earlier (1970), which is due to the richness of the present material. The variability concerns the gyrogonite length and width and the isopolarity index (ISI). The specimens described possess distinctly elongated basal part which is an important feature of the genus *Harrisichara*. This feature is visible especially well in longitudinal section. Secondary ridges are high and wide with a very characteristic structure (pl. 36:3b), intercellular ridges are very low with distinctly developed sutures.

ZPAL MgChar-	LPA in μm	LED in μm	ISI	AND in μm	ANI	Numb. conv.	Width conv. at EA in µm	Thick. conv. in μm
1/55	342	310	110	185	54	7	52	
111/345	497	374	132	255	51	7	64	
111/346	510	350	146	238	47	8	68	
III/347	510	377	135	234	45	8	68	
III/348	510	382	134	258	50	7	61	
III/349	527	401	131	246	47	8	68	
111/350	538	396	135	261	48	10	69	
HI/351	538	382	134	258	50	7	61	
I/105	550	450	122	210	38	8	77`	
III/238	556	399	140	240	43	9	60	45
Range:	342-556	310-450	110–146	185-261	38-54	7–10	52-77	45

Measured gyrogonites of Harrisichara cretacea KARCZ. and ZIEMB.

In longitudinal section, two calcification zones are visible; the inner one darker, thin, the outer light-coloured, thicker. Cellular spirals with secondary ridges higher than the intercellular ones. In the apical part cellular spirals are of the same thickness, or slightly thinner than at the equator. Basal plug thin, flat, deeply inserted, closing a funnel-like canal of the basal pore. Oospore membrane represented by black line along the interior walls of the spirals.

Remarks. — See KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO (1970).

Occurrence. — Upper Cretaceous (Nemegt Formation): Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

Harrisichara cepaeformis sp. n. (pl. 25:5-7)

Holotype: ZPAL MgChar-III/74; pl. 25:6.

Type horizon: Upper Cretaceous, Nemegt Formation. Type locality: Nemegt, Nemegt Basin, Gobi Desert. Derivation of the name: cepaeformis — Lat. cepa = onion, forma = shape, of the shape of an onion.

Diagnosis. — Gyrogonites small to middle-sized, subprolate and ellipsoidal, with broadly rounded summits and prolonged and protruding bases. Cellular spirals narrowing in the apical periphery. Apical junction in the form of a short irregular line.

Material. — Ten well preserved specimens.

Description. — Gyrogonites small to middle-sized, subprolate (ISI 112–127) and ellipsoidal (ANI 40–49), with broadly rounded summits and bases protruding in the form of a coneshaped projection. Length from 438 to 510 μ m, width from 355 to 452 μ m. Six to nine convolutions visible in lateral view. Cellular spirals wide (56–71 μ m), concave, with secondary ridges developed along the centres of the cellular furrows. Intercellular ridges more conspicuous than the secondary ones, which are low. Cellular spirals slightly narrowing in the apical periphery, forming an apical plate. Apical junction in the form of a short irregular line. Basal opening pentagonal. Outer opening of the basal pore situated at the same level as the surrounding spirals. Equatorial angle about 20°.

Remarks. — Harrisichara cepaeformis sp. n. is most similar to H. cretacea KARCZ, and ZIEMB., from which it differs in having more rounded summits and more prolonged bases.

Occurrence. — Upper Cretaceous (Nemegt Formation): Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

8 - Palaeontologia Polonica No. 42

ZPAL MgChar-III/	LPA in µm	LED in μm	ISI	AND in μm	ANI	Numb. conv.	Width conv. at EA in µm
352	438	357	122	217	49	6	59
74	440	355	124	200	45	8	56
353	467	402	116	224	48	9	58
354	479	377	127	224	47	7	64
355	493	387	127	229	46	8	68
356	493	425	116	238	48	9	71
357	496	408	121	241	48	8	71
358	510	414	123	251	49	7	71
359	510	433	118	238	47	9	68
360	510	452	112	204	40	9	68
Range:	438-510	355-452	112-127	200-251	40–49	6-9	56-71

Measured gyrogonites of Harrisichara cepaeformis sp. n.

Genus Lamprothamnium GROVES, 1916

Type species: Lamprothamnium papulosum (WALLROTH) J. GROVES, 1916 emend. R. D. WOOD, 1965, Sweden, Recent.

Lamprothamnium altanulaensis (KARCZ. and ZIEMB., 1970) comb. n. (pl. 32:1-8)

1970. Tectochara altanulaensis (KARCZ. and ZIEMB.); KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO, 139–141, pl. 32: 5, 6; pl. 34:2; fig. 11.

Emended diagnosis. — Gyrogonites small, subprolate to prolate, subovoidal to ellipsoidal, with slightly rounded or slightly protruding summits and somewhat protruding bases; cellular spirals in the apical centre approximately as wide as at the equator but very thin (1/4 of the equatorial thickness), forming peripheral depression. Basal pore situated in the bottom of a distinct, pentagonal depression. Basal plug very thin.

Material. — About 150 well preserved specimens.

Description. — Gyrogonites small, subprolate to prolate (ISI 116—149) and subovoidal to ellipsoidal (ANI 40—56) with slightly protruding summits and somewhat protruding and subtruncate bases; length from 355 to 552 μ m, width from 302 to 397 μ m. Five to nine convolutions visible in lateral view. Cellular spirals flat, concave or rarely convex, relatively wide, separated by narrow but distinct intercellular furrows. In the apical part cellular spirals approximately as wide as at the equator, but very thin, forming peripheral depression; towards summit they extend and rise meeting each other at one point or along a very short irregular line. In the basal part, cellular spirals of the same width as at the equator, surrounding a pentagonal basal pore, slightly depressed. Equatorial angle about 15°.

In longitudinal section, cellular spirals of an average thickness (40–50 μ m). In the apical part slight calcification of cellular spirals, which are about four times thinner than at the equator, is visible. Basal plug thin and flat, closing a funnel-like canal of the basal pore. Oospore well visible in some specimens filling the gyrogonite inside (pl. 11: 4); in many specimens the oospore membrane represented by black line along interior walls of spirals (pl. 11: 5, 6).

Remarks. — Owing to the richness of the present material it was possible to make detailed observations on the morphology of the gyrogonites L. altanulaensis, in longitudinal section. It appears that the apical part is very characteristic; the cellular spirals in this area, thin out strongly to form a peripheral groove and rise in the centre, which is typical of the genus Lamprothamnium. Thus, L. altanulaensis may be included in this genus without doubt. Lamprotham-

ZPAL MgChar-	LPA in µm	LED in µm	151	AND in μm	ANI	Numb. conv.	Width conv. at. EA in µm	Thick. conv. in μm
 I/76	355	302	120	145	48	7	55	
I/33	390	335	116	220	56	6	65	
1/32	400	320	125	162	40	5	80	
1/35	430	295	149	205	47	7	65	
111/182	456	337	138	196	43	7	72	37
111/401	467	397	118	193	41	6	73	
111/402	470	380	124	195	41	6	81	
III/181	511	390	131	207	40	7	63	51
III/403	540	394	138	238	44	9	59	
III/404	552	390	142	255	46	8	71	
Range:	355-552	302-397	116-149	145-255	40-56	5-9	55-81	

Measured gyrogonites of Lamprothamnium altanulaensis (KARCZ. and ZIEMB.) comb. n.

nium is the recent genus. Its fossil representatives were found first by CASTEL and GRAMBAST (1969) in the Eocene deposits of France. L. altanulaensis is the oldest species of this genus recorded until now.

Occurrence. — Upper Cretaceous (Nemegt Formation): Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

Genus Latochara Mädler, 1955

Type species: Latochara latitruncata (PECK) MÄDLER, 1955, North America, Upper Jurassic.

Latochara sp. (pl. 34:5a-b)

Material. — One well preserved specimen.

8+

Description. — Gyrogonite barrel-shaped, with truncate summit and broadly rounded base; length 420 μ m, width 340 μ m, isopolarity index 123. Eight convolutions visible in lateral view. Cellular spirals flat, delimited by indistinctly marked intercellular sutures. In the summit area calcification of cellular spirals reduced; there, the spirals become shallowly concave and remain concave as they turn upward to form a truncate pyramidal-shaped projection in the centre. Outer opening of the basal pore pentagonal. Equatorial angle about 15°.

Remarks. — Latochara sp. is most similar to Latochara curtula Z. WANG (1978) from which it differs in size and in structure of apical projection.

Occurrence. — Upper Cretaceous (Nemegt Formation): Nemegt, Nemegt Basin, Gobi Desert.

Genus Maedlerisphaera HORN af RANTZIEN, 1959

Type species: Maedlerisphaera ulmensis (STRAUB, 1952) HORN af RANTZIEN, 1959, Germany, Oligocene.

Maedlerisphaera pseudoulmensis KARCZ. and ZIEMB., 1970 (pl. 37:1-7)

Emended diagnosis. — Gyrogonites small to middle-sized, subprolate to prolate and ellipsoidal with protruding summits and rounded or slightly protruding bases. In the apical periphery cellular spirals distinctly narrowing and constricted, forming a deep peripheral groove; in the apical centre cellular spirals increase in width. Apical nodules sometimes prominent. Basal plug wider than thick. Material. — About 150 well preserved specimens.

Description. — Gyrogonites small to middle-sized, subprolate to prolate (ISI 119– 150) and ellipsoidal (ANI 45–52), with protruding summits and rounded or slightly protruding bases; length from 400 to 535 μ m, width from 300 to 420 μ m. Eight to ten convolutions visible in lateral view. Cellular spirals concave or flat, from 50 to 56 μ m wide, delimited by very low and narrow intercellular ridges, with sutures poorly marked. In the apical periphery cellular spirals narrow rapidly to about 1/3 of their normal width, then turn abruptly towards the centre, expanding rapidly and then uniting along a short irregular line. In the basal part cellular spirals slightly narrowing with tips somewhat widened around the basal pore, ending roundedly. Equatorial angle about 15°.

ZPAL MgChar-	LPA in μm	LED in µm	ISI	AND in _ا یس	ANI	Numb. conv.	Width conv. at EA in µm	Thick. conv. in μm
I/155	400	300	133	200	50	9	42	
I/157	417	350	119	217	52	8	47	
I/154	417	320	150	212	51	8	42	
III/197	480	406	118	234	48	8	60	56
ІП/196	490	397	130	234	49	8	53	54
III/195	510	420	121	258	51	8	60	50
111/383	510	352	145	234	45	10	59	
111/382	527	393	134	261	49	8	75	
III/384	533	409	130	263	49	9	68	
111/385	535	401	133	248	47	9	65	
Range:	400535	300-420	119-150	200-263	45-52	8-10	42–75	50 –56

Measured gyrogonites of Medlerisphaera pseudoulmensis KARCZ. and ZIEMB.

In longitudinal section, cellular spirals of an average thickness (50–56 μ m), with poorly marked lamination. In the apical periphery cellular spirals rapidly thinning and in the apical centre regaining their equatorial thickness. In the basal part cellular spirals as thick as at the equator. Basal plug wider than thick.

Fructificational wall locally visible as a dark zone.

Remarks. — The present material contained numerous and well preserved specimens of *Maedlerisphaera pseudoulmensis*, thus, it was possible to make through an observation on the morphology of the gyrogonites apical part. These morphological features can not be considered to be falling within the variability range of the genus *Sphaerochara* HORN af RANZIEN. Therefore, we sustain our opinion expressed in 1970 that the genus *Maedlerisphaera* should not be included in *Sphaerochara* (See KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO, 1970: 131).

Occurrence. — Upper Cretaceous (Nemegt Formation): Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

Genus Mesochara GRAMBAST, 1962

Type species: Mesochara symmetrica (PECK, 1957) GRAMBAST, 1962; North America, Aptian.

Mesochara mongolica KARCZ. and ZIEMB., 1970 (pl. 28:2-4, 6, 7) -

1970. Mesochara mongolica KARCZ. and ZIEMB.; J. KARCZEWSKA and M. ZIEMBIŃSKA-TWORZYDŁO, 132, pl. 30: 1; pl. 34: 1; fig. 5.

Material. — About 170 well preserved specimens. Description. — See Karczewska and ZIEMBIŃSKA-TWORZYDŁO (1970). **Remarks.** — The specimens from the present material undoubtedly fall within the range of variability of *Mesochara mongolica* KARCZ. and ZIEMB. (1970). In comparison with the gyrogonites referred to *M. obventicia* sp. n. they are larger and have more protruding summits and bases and somewhat shorter canal of the basal pore.

Occurrence. — Upper Cretaceous (Nemegt Formation): Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

Mesochara stankevitchii Kyansep-Romaschkina, 1975 (pl. 29:1-3, 6, 7)

1975. Mesochara stankevitchii KYANSEP-ROM.; N. P. KYANSEP-ROMASCHKINA, 195–196, pl. 4:1, 2.

Material. — About thirty well preserved specimens.

Description. — Gyrogonites small, subprolate to prolate (ISI 130–143) and subovoidal to ellipsoidal (ANI 40–48), with protruding summits and bases; length from 340 to 415 μ m. Seven to ten convolutions visible in lateral view. Cellular spirals concave, narrow, with distinct intercellular ridges; secondary ridges absent. Cellular spirals continue onto the summit without changing their size and shape; in the apical centre these are slightly widened to join each other in a point or along a short, irregular line. At the equator the spirals are 25 to 61 μ m wide.

ZPAL MgChar-III/	LPA in µm	LED in μm	ISI	AND in μm	ANI	Numb. conv.	Width conv, at EA in μm	Thick. conv. ín μnι
276	340	258	131	163	46	9	40	_
277	340	238	143	136	40	9	25	-
281	364	255	143	161	44	9	35	-
201	364	264	138	150	41	8	42	24-44
206	374	280	133	180	48	8	41	25-44
282	384	275	140	183	48	9	37	_
283	387	2 84	136	170	44	10	30	_
278	408	314	130	170	42	8	21	_
279	408	299	137	178	43	7	61	_
280	415	302	137	170	41	9	42	-
Range:	340415	238-314	130-143	136–18 3	40-48	7-10	25-61	24-44

Measured gyronogonites of Mesochara stankevitchii KYANSEP-ROM.

Basal poles prolonged and protruding into a cone-shaped projection. Outer opening of the basal pore pentagonal, situated at the same level as the protruding ends of surrounding spirals. Equatorial angle about 20°.

In longitudinal section, cellular spirals of an average thickness, narrow, of the same thickness or somewhat thinner in the apical part than at the equator. Basal plug thin, deeply inserted, closing cylindrical canal of the basal pore. Basal canal long and narrow; the outer part of the basal pore enclosed by appendages protruding downwards from the gyrogonites. Fructificational wall visible locally as a dark zone.

Remarks. — Mesochara stankevitchii, was erected by KYANSEP-ROMASCHKINA (1975) to include specimens similar to gyrogonites of Mesochara voluta (PECK, 1937) GRAMBAST, 1965 differing from those described by PECK in having strongly elongated basal part. PECK (1957), when describing the North American Mesozoic gyrogonites of Mesochara voluta, included in this species, beside the typical forms, also those possessing an elongated basal part. In the same time this author remarked that "it is possible that more than one species is represented" (p. 39).

In the present material one can observe that the gyrogonites of *M. stankevitchii* differ from those of *M. voluta* in having elongated not only the basal but also the apical part, strongly crowded spirals visible in lateral view and also in displaying very characteristic structure of the cellular spirals in longitudinal section. Therefore, our investigations resulted in a better recognition of the morphology of gyrogonites *M. stankevitchii* enabling the separation of this species from those related. After having examined the material from the Mongolian Upper Cretaceous deposits described by KYANSEP-ROMASCHKINA (1975) we have together with the latter author reached the conclusion that the inclusion of gyrogonites *M. voluta* described by KARCZEWSKA and ZIEMBIŃSKA-TWORZYDLO (1970) to *M. stankevitchii* was unjustified.

Occurrence. — Upper Cretaceous (Campanian — Maastrichtian): Bugeen Tsav and Altan Ula I, (KYANSEP-ROMASCHKINA, 1975). Upper Cretaceous (Nemegt Formation): Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

Mesochara voluta (PECK, 1937) GRAMBAST, 1965 (pl. 26:2, 5)

1937. Chara voluta PECK; R. E. PECK, 85, pl. 14:16-19.

- 1941. Chara voluta PECK; R. E. PECK, 289, pl. 42:12-14.
- 1957. Praechara voluta (РЕСК) РЕСК; R. E. РЕСК, 39, pl. 7: 22-24, 26; non pl. 7: 25, 27.
- 1965. Mesochara voluta (PECK) GRAMBAST; L. GRAMBAST, 581
- 1967, Mesochara voluta (PECK) SCHAIKIN; J. M. SCHAIKIN, 46.
- 1970. Mesochara voluta (PECK) KARCZ. and ZIEMB.; J. KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO, 133, pl. 30:2, 3; fig. 6.
- 1975. Mesochara voluta (PECK) SCHAIKIN; N. P. KYANSEP-ROMASCHKINA, 197, pl. 4: 4-6.

Material. — About forty well preserved specimens.

Description. — Gyrogonites small, prolate spheroidal to subprolate (1SI 106-125) and ellipsoidal (ANI 44-51), with broadly rounded summits and slightly protruding bases; length from 340 to 411 μ m, width from 285 to 350 μ m. Seven to nine convolutions visible in lateral view. Cellular spirals concave, from 42 to 60 μ m wide, delimited by sharp intercellular ridges. Cellular spirals continue onto summit without changing their size and shape, to join each other along a short irregular line. The outer opening of the basal pore situated at the same level as the protruding ends of surrounding spirals. Equatorial angle about 5[°].

In longitudinal section, cellular spirals about 40 μ m thick, fine-crystalline; in the apical part cellular spirals of the same thickness as at the equator. Basal plug thin, flat, deeply inserted, closing a funnel-like canal of the basal pore. Basal canal short and wide.

ZPAL MgChar-III/	LPA in μm	LED in μm	151	AND in μm	ANI	Numb. conv.	Width conv. at EA in um	Thick. conv. in μm
284	340	285	119	149	44	8	56	
286	357	299	119	170	48	8	42	_
285	362	340	106	187	51	8	54	-
289	374	319	120	183	49	9	51	_
292	380	318	120	183	48	7	51	-
290	380	300	125	187	49	7	49	_
203	394	341	115	164	44	7	56	41-60
287	398	350	112	195	50	7	54	-
288	400	340	118	180	45	8	60	_
291	411	331	123	204	50	8	46	-
Range:	340-411	285-350	106-125	149-204	44-51	7-9	42-60	41-60

Measured gyrogonites of Mesochara voluta (PECK) GRAMBAST

Remarks. — The gyrogonites of the genus *Mesochara* are most differentiated and several species may be distinguished. KYANSEP-ROMASCHKINA (1975) included *M. voluta* described by KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO (1970) to the species *M. stankevitchii* KYANSEP-ROMASCHKINA, which is disscussed earlier in this text, in remarks on *M. stankevitchii* (p. 118).

Occurrence. — Upper Jurassic, Lower Cretaceous (Aptian and Albian): North America. Upper Cretaceous: USSR, Moldavia-Krym; Central Asia-Western Erdeni Ula. Upper Cretaceous (Nemegt Formation): Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

> Mesochara gradzinskii sp. n. (pl. 27:3-6)

Holotype: ZPAL MgChar-III/108; pl. 27:3.

Type horizon: Upper Cretaceous; Neniegt Formation.

Type locality: Nemegt, Nemegt Basin, Gobi Desert.

Derivation of the name: gradzinskii — in honour of Professor Ryszard Gradziński who encouraged our research on Charophyta.

Diagnosis. — Gyrogonites very small, prolate spheroidal and ellipsoidal with broadly rounded summits and bases; length from 267 to 357 μ m, width from 270 to 316 μ m. Cellular spirals strongly concave, wide and of acute equatorial angle, delimited by sharp and protruding intercellular ridges. Cellular spirals continue onto the summit without changing their size and shape; apical junction short or punctiform.

Material. - About fifty well preserved specimens.

Description. — Gyrogonites very small, prolate spheroidal (ISI 98–114) and ellipsoidal (ANI 38–58), with broadly rounded summits and bases; length from 267 to 357 μ m, width from 270 to 316 μ m. Five to seven convolutions visible in lateral view. Cellular spirals strongly concave, 51 to 73 μ m wide, delimited by sharp and protruding intercellular ridges. Cellular spirals continue onto the summit without changing their size and shape; apical junction short, in some specimens almost punctiform. Outer opening of the basal pore pentagonal, comparatively small, situated at the same level as the ends of surrounding spirals. Equatorial angle very acute, less than 5°.

ZPAL MgChar-III/	LPA in µm	LED in լստ	ISI	AND in μm	ANI	Numb. conv.	Width conv. at EA in µm	Thick. conv. in μm
215	267	270	98	156	58	6	53	35-44
325	278	272	103	105	38	6	51	
326	282	278	101	119	42	7	51	
214	300	295	102	141	47	5	60	21-48
108	310	300	103	140	45	8	60	_
320	311	297	106	144	46	6	64	-
321	314	289	109	156	50	6	57	_
322	316	306	103	149	47	7	54	_
323	348	316	110	146	42	8	54	
324	357	314	114	163	46	6	73	-
Range:	267-357	270–316	98-114	105-163	38-58	5-6	51-73	21–48

Measured gyrogonites of Mesochara gradzinskii sp. n.

In longitudinal section, cellular spirals strongly calcified; in the apical part their thickness is about two times smaller than at the equator. Basal plug not preserved. Fructificational wall preserved imperfectly and only locally. **Remarks.** — *Mesochara gradzinskii* sp. n. differs from other known species of *Mesochara* in being smaller and displaing a very acute equatorial angle of the spirals and low isopolarity index.

Occurrence. — Upper Cretaceous (Nemegt Formation), Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

Mesochara inflata sp. n. (pl. 27:1, 2; pl. 7:1, 5)

Holotype: ZPAL MgChar-III/55; pl. 27: 1. Type horizon: Upper Cretaceous, Nemegt Formation, Type locality: Nemegt, Nemegt Basin, Gobi Desert. Derivation of the name: Lat. inflatus = inflated.

Diagnosis. — Gyrogonites small, prolate spheroidal to subprolate and ellipsoidal with rounded summits and broadly truncated bases; length from 374 to 441 μ m. Cellular spirals concave, delimited by low and blunt intercellular ridges. Cellular spirals continue onto the summit without changing their shape and size; apical junction predominantly punctiform. Equatorial angle about 15°.

Material. — About fifty well preserved specimens.

Description. — Gyrogonites small, prolate spheroidal to subprolate (ISI 109—124) and ellipsoidal (ANI 43—47), with rounded summits and broadly truncated bases; length from 374 to 441 μ m, width from 335 to 362 μ m. Six to nine convolutions visible in lateral view. Cellular spirals concave, from 50 to 60 μ m wide, delimited by low and blunt intercellular ridges. Cellular spirals continue onto the summit without changing their size and shape. In the apical centre spiral ends slightly pointed, forming a punctiform apical junction, or meeting each other along a short irregular line. Outer opening of the basal pore distinctly pentagonal, situated at the same level as the protruding ends of surrounding spirals. Equatorial angle about 15°.

ZPAL MgChar-III/	LPA in μm	LED in μm	181	AND in μm	ANI	Numb. conv.	Width conv. at EA in µm	Thick. conv. in µm
293	374	340	110	161	43	8	51	_
213	377	345	109	167	44	8	60	46
209	385	335	115	180	47	6	60	39-53
55	390	320	121	185	47	9	50	_
294	399	357	109	176	44	8	57	
295	400	362	111	187	47	8	51	_
296	401	362	111	183	45	7	57	
297	408	340	120	183	45	8	59	
29 8	416	340	123	184	44	9	54	-
212	441	356	124	204	46	7	60	41-60
Range:	374-441	335-362	109-124	161-204	43-47	69	50-60	39-60

Measured gyrogonites of Mesochara inflata sp. n.

In longitudinal section, cellular spirals fine-crystalline, of an average thickness (about 59 μ m), in the apical part somewhat thinner than at the equator. Basal canal long and funnel-like; outer part of the basal pore enclosed by appendages protruding downwards from the gyrogonite.

Remarks. — Mesochara inflata sp. n. is most similar to Mesochara voluta (PECK) GRAM-BAST from which it differs in being larger and having more pointed apical part, more elongated and truncate basal part, higher equatorial angle and thinning apical part of cellular spirals visible in longitudinal section.

Occurrence. — Upper Cretaceous (Nemegt Formation), Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

Mesochara luculenta sp. n. (pl. 29;4, 5; pl. 30:8, 12)

Holotype: ZPAL MgChar-III/33; pl. 29: 5. Type horizon: Upper Cretaceous, Nemegt Formation. Type locality: Nemegt, Nemegt Basin, Gobi Desert. Derivation of the name: Lat. luculentus = glistening.

Diagnosis. — Gyrogonites small, subprolate to prolate and ellipsoidal, with protruding summits and rounded bases; length from 360 to 454 μ m, width from 295 to 350 μ m. Cellular spirals wide and concave, delimited by low and blunt intercellular ridges. Cellular spirals reach the apex at a relatively high angle, forming slightly extended apical junction. Equatorial angle about 15°.

Material. — About forty well preserved specimens.

Description. — Gyrogonites small, subprolate to prolate (1SI 120–138) and ellipsoidal (ANI 43–50), with protruding summits and rounded bases; length from 360 to 454 μ m, width from 295 to 350 μ m. Seven to nine convolutions visible in lateral view. Cellular spirals wide (42-64 μ m), delimited by low and blunt intercellular ridges. Cellular spirals reach the apex at a relatively high angle, forming slightly extended apical junction. The outer opening of

ZPAL MgChar-111/	LPA in µm	LED in μm	ISI	AND in μm	ANI	Numb. conv.	Width conv. at EA in μm	Thick. conv. in μm
33	360	295	122	170	47	8	45	_
299	369	302	122	185	50	8	47	-
300	391	309	126	170	43	8	47	_
199	396	330	120	171	44	8	60	46-60
301	405	331	122	175	43	8	59	_
305	419	340	123	209	50	8	56	-
304	430	328	131	209	48	7	57	_
303	440	320	138	207	47	7	64	-
302	442	350	126	208	47	7	51	-
307	454	340	133	221	49	9	51	_
Range:	360-454	295-350	120-138	170-221	43-50	7-9	45-64	46-60

Measured gyrogonites of Mesochara luculenta sp. n.

the basal pore pentagonal, situated at the same level as the protruding ends of surrounding spirals. Equatorial angle about 15°.

In longitudinal section, cellular spirals thick in the apical part gradually thinning down to 1/3 of their thickness at the equator. Basal canal funnel-like, long and narrow. Basal plug not preserved. Fructification wall visible locally as a dark zone.

Remarks. — M. luculenta sp. n. is most similar to those of M. stankevitchii KYANSEP-ROMASCHKINA from which it differs in displaying lower isopolarity index and having more rounded bases, wider cellular spirals and lower equatorial angle. From Mesochara inflata sp. n. it differs in having less elongated bases, thicker cellular spirals and somewhat lower isopolarity index.

Occurrence. — Upper Cretaceous (Nemegt Formation), Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

Mesochara obventicia sp. n. (pl. 30:5-7, 10)

Holotype: ZPAL MgChar-III/51; pl. 30:10. Type horizon: Upper Cretaceous, Nemegt Formation. Type locality: Nemegt, Nemegt Basin, Gobi Desert. Derivation of the name: Lat. obventicius = incidental.

Diagnosis. — Gyrogonites small, subprolate to prolate and ellipsoidal, with slightly protruding summits and bases; length from 340 to 403 μ m, width from 272 to 324 μ m. Cellular spirals concave, delimited by distinct and protruding intercellular ridges. Cellular spirals continue onto the summit at a large angle; in the apical part spirals slightly narrower; apical junction punctiform. Equatorial angle about 20°.

Material. — About twenty well preserved specimens.

Description. — Gyrogonites small, subprolate to prolate ($151 \ 124 \ 144$), and subovoidal to ellipsoidal (ANI 40-51), with slightly protruding summits and bases; length from 340 to 403 µm, width from 272 to 324 µm. Seven to ten convolutions visible in lateral view. Cellular spirals concave, delimited by distinct and protruding intercellular ridges. Cellular spirals con-

ZPAL MgChar-JII/	LPA in µm	LED in µm	151	AND in μm	ANI	Numb. conv.	Width conv. at EA in µm	Thick conv. in μn
312	340	275	J24	148	43	9	34	
315	352	277	127	147	42	8	44	
316	374	285	132	175	47	10	35	
314	375	275	136	148	40	9	39	
51	375	280	134	150	40	8	35	
319	379	284	134	197	51	10	39	
317	380	277	138	194	51	9	39	
318	386	289	133	170	44	9	35	
313	391	272	144	170	43	9	34	
210	403	324	124	173	43	7	60	32–4
Range:	340-403	272324	124-144	147-197	40-51	7-10	34-60	32-4

Measured gyrogonites of Mesochara obventicia sp. n.

tinue onto summit at a large angle, narrowing slightly in the apical periphery, extending and rising to meet each other at one point or along a very short irregular line. At the equator cellular spirals from 34 to 60 μ m wide. Basal part, as a rule, slightly prolonged, but truncate in the basal centre. Outer opening of the basal pore pentagonal, situated at the same level as the protruding ends of surrounding spirals. Equatorial angle about 20°.

In longitudinal section, cellular spirals fine-crystalline, thick and of the same thickness in the apical part as at the equator. Basal plug thin, deeply inserted, closing funnel-like canal of the basal pore. Basal canal wide; the outer part of the basal pore enclosed by thick appendages protruding downwards from the gyrogonite. **Remarks.** — M. obventicia sp. n. is most similar to M. mongolica, from which it differs in being smaller and having less elongated apex, more rounded bases and larger basal canal encircled by very thick spiral endings.

Occurrence. — Upper Cretaceous (Nemegt Formation): Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

Mesochara orientalis sp. n. (pl. 25:2-4; pl. 26:1)

Holotype: ZPAL MgChar-III/83; pl. 25:3. Type horizon: Upper Cretaceous, Nemegt Formation. Type locality: Nemegt, Nemegt Basin, Gobi Desert. Derivation of the name: Lat. orientalis = eastern.

Diagnosis. — Gyrogonites middle-sized, prolate and ellipsoidal, with protruding summits and prolonged but subtruncate bases. Cellular spirals concave, with secondary ridges of almost the same height as the intercellular ridges. Cellular spirals continue onto summit at a large angle, narrowing slightly in the apical periphery; apical junction punctiform. Basal plug thin.

Material. — Ten well preserved specimens.

Description. — Gyrogonites middle-sized, prolate (ISI 150—210) and ellipsoidal (ANI 41—49) with protruding summits and prolonged but subtruncate bases; length from 457 to 620 μ m, width from 223 to 352 μ m. Eight to eleven convolutions visible in lateral view. Cellular

ZPAL MgChar-111/	LPA in µm	LED in μm	151	AND in μm	ANI	Numb. conv.	Width conv. at EA in µm	Thick conv. in μm
309	457	300	153	210	41	10	51	
308	465	312	150	224	48	11	54	
223	492	320	154	233	47	9	60	46
310	493	223	210	240	49	8	51	
311	527	353	150	231	44	10	61	
83	620	400	154	300	48	9	65	
Range:	457620	223-352	150-210	210-300	41-49	8-11	51-65	46

Measured gyrogonites of Mesochara orientalis sp. n.

spirals concave, with well developed and distinctly ornamented secondary ridges. Intercellular ridges somewhat lower than the secondary ones. Cellular spirals continue onto summit at a large angle narrowing slightly in the apical periphery, extending and rising to meet each other at one point or along a very short irregular line. Poorly developed tubercles are visible below the apical junction. Cellular spirals at the equator from 51 to 65 μ m wide. Basal part elongated but truncate in the basal centre. Outer opening of the basal pore small, situated at the same level as the protruding ends of surrounding spirals. Equatorial angle about 10°.

In longitudinal section, cellular spirals are of an average thickness ca. 46 μ m composed of two calcification zones; the inner one thinner, darker and fine-crystalline, the outer thicker, light-coloured and crystalline in texture. In the apical part cellular spirals are thinner than at the equator. Basal plug thin, flat, deeply inserted, closing a funnel-like canal of the basal pore. Basal canal wide; the outer opening of the basal pore enclosed by thick appendages that protrude downwards from the gyrogonite. Oospore membrane represented by black line along the interior walls of the spirals. **Remarks.** — Mesochara orientalis sp. n. is most similar to Mesochara terebrata KARCZ. and ZIEMB., 1972 from which it differs in having larger dimensions, smaller protrusion of the summit, and more elongated cellular spirals in the basal part.

Occurrence. — Upper Cretaceous (Nemegt Formation), Nemegt, Nemegt Basin, Gobi Desert.

Mesochara sp. (pl. 30:1, 2; pl. 31:4, 5)

Material. — Five well preserved specimens.

Description. — Gyrogonites middle-sized, prolate (ISI 140–151) and ellipsoidal (ANI 47– 50), with protruding summits and bases; length from 510 to 560 μ m, width from 352 to 400 μ m. Eight to ten convolutions visible in lateral view. Cellular spirals concave, with secondary ridges. Cellular spirals continue onto the summit without changing their shape and size; in the apical centre they join each other in one point. At the equator cellular spirals from 56 to 68 μ m wide. Basal part slightly prolonged. Outer opening of the basal pore situated at the same level as the ends of surrounding spirals. Equatorial angle about 20°.

In longitudinal section, cellular spirals thick (50 μ m) and composed of two calcification zones; the inner one thin. darker, the outer four times thicker. Secondary ridges higher than the

ZPAL MgChar-III/	LPA in µm	LED in µm	ISI	AND in μm	ANI	Numb. conv.	Width conv. at EA in μm	Thick. conv. in μm
329	510	365	140	238	47	10	66	
155	532	352	151	266	50	10	60	
328	533	382	140	263	49	10	61	
330	535	357	150	255	50	8	64	
221	560	400	140	270	49	10	68	50
Range:	510-560	352-400	140-151	238-270	47-50	8-10	56-68	50

Measured gyrogonites of Mesochara sp.

intercellular ones, especially strongly developed in the apical part. Basal plug thinner than wide. Oospore membrane represented by black line along interior wall of spirals.

Remarks. — Mesochara sp. described herein is most similar to Mesochara sp. described by KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO (1972) from the Palaeocene deposits of Mongolia, from which it differs in having somewhat larger dimensions and smaller protrusion of the summit.

Occurrence. — Upper Cretaceous (Nemegt Formation), Nemegt, Nemegt Basin, Gobi Desert.

Genus Microchara GRAMBAST, 1959

Type species: Microchara hystrix GRAMBAST, 1959, France, Eocene.

Microchara cf. cristata GRAMBAST, 1971 (pl. 30:3, 4, 9, 11)

Material. — About forty well preserved specimens.

Description. — Gyrogonites small, prolate spheroidal to subprolate (ISI 103–130) and ellipsoidal (ANI 40–54), with rounded summits and slightly protruding bases; length from 397 to 510 μ m, width from 340 to 433 μ m. Seven to ten convolutions visible in lateral view.

Cellular spirals wide (54-69 μ m), concave, with secondary ridges well developed, often ornamented by small and indistinctly delimited protuberances. Secondary ridges more conspicuous than the intercellular ones. Intercellular ridges low and sharp, with invisible sutures. Cellular spirals continue onto the summit without changing their width; secondary ridges disappearing at the apical periphery. The apical centre is occupied by more or less distinctly developed cellular tubercles, situated on each of the tips close to the apical junction. Basal pole slightly protruding but truncate in the basal centre; intercellular ridges markedly higher, ending more or less roundedly towards the basal pore. Outer opening of the basal pore pentagonal, situated somewhat lower than the protruding ends of surrounding spirals. Equatorial angle about 10°.

In longitudinal section, cellular spirals wide, with secondary ridges higher than the intercellular ones; in the apical part they are of the same thickness or somewhat thicker than at the equator. In the apical periphery cellular spirals without secondary ridges raising in the apical centre to form distinct apical nodules. Basal plug not preserved.

Remarks. — Gyrogonites of *Microchara* cf. *cristata* from Mongolia differ from those described by GRAMBAST (1971) from the Upper Cretaceous of southern France in being smaller and displaying somewhat lower isopolarity index, therefore they can be only tentatively included in this species.

ZPAL MgChar-III/	LPA in µm	LED in µm	ISI	AND in μm	ANI	Numb. conv.	Width conv. at EA in µm	Thick conv. in µm
422	397	340	116	209	53	8	61	
423	400	387	103	183	45	7	59	
424	442	374	118	232	53	8	61	
194	458	410	112	185	40	8	60	51
165	457	385	118	216	47	9	64	
166	467	408	114	230	49	9	63	
425	467	357	130	224	48	9	54	
426	486	385	126	231	48	9	64	
427	489	413	117	265	54	10	64	
428	510	433	117	246	48	8	69	
Range:	397-510	340-433	103-130	183-265	40-54	7-10	5469	51

Measured gyrogonites of Microchara cf. cristata GRAMBAST, 1971

Occurrence. — Upper Cretaceous (Nemegt Formation), Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

Genus Mongolichara (KYANSEP-ROMASCHKINA, 1975) emend. KARCZEWSKA and KYANSEP-ROMASCHKINA, 1979

Type species: Mongolichara gobica (KARCZ. and ZIEMB., 1970) KARCZEWSKA and KYANSEP-ROM., 1979, Mongolia, Upper Cretaceous.

Mongolichara gobica (KARCZ. and ZIEMB., 1970) KARCZEWSKA and KYANSEP-ROMASCHKINA, 1979 (pl. 35:4-6)

- 1970. Tectochara gobica KARCZ. and ZIEMB.; KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO, 137–139, pl. 33: 1, 2; pl. 34: 5, fig. 10.
- 1975. Mongolichara deplanata KYANSEP-ROM.; KYANSEP-ROMASCHKINA, 201, pl. 5: 2.
- 1979. Mongolichara gobica (KARCZ. and ZIEMB.) KARCZEWSKA and KYANSEP-ROM; KARCZEWSKA and KYANSEP-ROMA-SCHKINA, 424, pl. 3: 1-4.

Material. — About 700 well preserved specimens.

Description. — See KARCZEWSKA and KYANSEP-ROMASCHKINA (1979).

Additional description. — In longitudinal section, two calcification zones are visible; the inner one darker, thin, composed of crystals of uniform size, closely set, perpendicular to the oospore membrane. The outer zone light-coloured, three to four times thicker than the inner one, with well developed lamination. Secondary ridges wide, higher than the intercellular ones. Basal plug thick, pyramidal, with inner surface flat and outer one concave. Canal of the

Measured gyrogonites of Mongolichara gobica (KARCZ. and ZIEMB.) KARCZEWSKA and KYANSEP-ROMASCHKINA

							Width	Thick
ZPAL MgChar-	LPA in µm	LED in µm	ISI	AND in µm	ANI	Numb. conv.	conv. at EA in μm	conv. in μm
1/62	427	375	144	205	48	7	57	_
1/63	455	370	123	205	45	- 8	50	-
III/190	578	501	115	278	48	7	87	80
III/241	586	535	109	306	52	7	93	
III/242	612	544	112	311	50	7	107	_
III/243	630	598	106	340	54	6	102	-
III/244	637	612	103	295	46	7	90	-
111/245	663	569	118	272	41	9	85	_
11 f/189	675	600	112	276	41	7	98	99
111/246	697	649	104	323	46	7	104	-
Range:	427–697	375–649	103-123	205-340	41-54	6–9	50-107	80-99

basal pore short and wide. Two calcification zones also distinctly developed. Fructificational wall visible in sectioned specimens as a brownish, distinctly delimited zone.

Occurrence. — Upper Cretaceous (Nemegt Formation), Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO, present paper). Upper Cretaceous (Campanian — Maastrichtian) Bugeen Tsav, Altan Ula, Ulan Bulak (KYAN-SEP-ROMASCHKINA, 1975).

Mongolichara aurea (KARCZ. and ZIEMB.) KARCZ. and KYANSEP-ROM., 1979 (pl. 15:2, 5)

1970. Tectochara aurea KARCZ. and ZIEMB.; J. KARCZEWSKA and M. ZIEMBIŃSKA-TWORZYDŁO, 141–142, pl. 30: 4; fig. 12. 1979. Mongolichara aurea (KARCZ. and ZIEMB.) comb. n.; J. KARCZEWSKA and N. P. KYANSEP-ROMASCHKINA, pl. 4:2a-c.

Material. — About fifty well preserved specimens.

Description. — See KARCZEWSKA and ZIEMBIŃSKA-TWORZYDLO (1970).

Additional description. — In longitudinal section, two calcification zones are visible; inner zone darker, very thin, the outer one light-coloured, five times thicker. In the apical part cellular spirals three times thinner than at the equator. Basal plug thinner than wide, the inner part slightly convex, the outer one concave. Fructification wall preserved imperfectly and only locally.

Remarks. — See KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO (1970). *Mongolichara aurea* is most similar to *Mongolichara costulata* KYANSEP-ROMASCHKINA (1975) from which it differs in being much smaller.

Occurrence. — Upper Cretaceous (Nemegt Formation), Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

Mongolichara costulata KYANSEP-ROMASCHKINA, 1975 (pl. 23:1, 2, 4-6)

1975. Mongolichara costulata Kyansep-Rom.; N. P. Kyansep-Romaschki Na, 202, pl. 5: 3; pl. 6: 1, 4.

Material. — About 450 well preserved specimens.

Description. — Because KYANSEP-ROMASCHKINA has not described longitudinal section of the gyrogonites, this description is given in the present paper.

In longitudinal section, cellular spirals of gyrogonites thick and wide (80-87 μ m), with poorly marked lamination.

Secondary ridges low, of almost the same height as the intercellular ones. Cellular spirals in the apical periphery narrowing abruptly, two or three times narrower in the apical centre than at the equator, forming a distinct apical depression. Oospore membrane represented by black zone occurring along the inner walls of the cellular spirals.

Occurrence. — Upper Cretaceous (Campanian — Maastrichtian), Bugeen Tsav, Altan Ula and Ulan Bulak (KYANSEP-ROMASCHKINA, 1975). Upper Cretaceous (Nemegt Formation) Nemegt and Altan Ula IV (KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO, present paper), Nemegt Basin, Gobi Desert.

> Mongolichara fulgida sp. n. (pl. 24:2, 5-7)

Holotype: ZPAL MgChar-III/150; pl. 24:2. Type horizon: Upper Cretaceous, Nemegt Formation. Type locality: Nemegt, Nemegt Basin, Gobi Desert. Derivation of the name: Lat. fulgidus = lustrous.

Diagnosis. — Gyrogonites middle-sized, subprolate and subovoidal to ellipsoidal with, broadly rounded and somewhat flattened summits and rounded bases. Cellular spirals thick and flat to convex. In the apical part cellular spirals narrower and depressed forming a distinct peripheral groove; in the apical centre these are slightly thicker meeting each other along a very short irregular line. Basal plug thick. Outer opening of the basal pore distinctly pentagonal, situated in the bottom of a low crater-like depression.

Material. - About 150 well preserved specimens.

Description. — Gyrogonites middle-sized, subprolate (ISI 112–125) and subovoidal to ellipsoidal (ANI 36–48), with broadly rounded and somewhat flattened summits and rounded bases; length from 642 to 751 μ m, width from 534 to 637 μ m. Seven to nine convolutions visible in lateral view. Cellular spirals flat to convex, from 79 to 102 μ m wide, delimited by distinct,

ZPAL MgChar-111/	LPA in µm	LED in μm	ISI	AND in μm	ANI	Numb. conv.	Width conv. at EA in µm	Thick conv. in μm
255	642	558	112	292	45	8	93	_
150	650	540	120	309	47	8	90	-
224	654	534	123	315	48	7	102	99
256	680	544	125	309	45	8	95	-
257	680	561	121	320	47	8	81	
258	680	586	117	323	47	8	93	
259	680	595	114	299	43	8	98	-
260	700	567	124	306	44	8	85	_
261	705	589	118	251	36	9	79	_
262	751	637	118	284	38	9	90	_
Range:	642-751	534637	112-125	251-323	36-48	7–9	79–102	99

Measured gyrogonites of Mongolichara fulgida sp. n.

slightly depressed intercellular sutures. In the apical part cellular spirals much narrower forming a peripheral groove; in the apical centre these are somewhat thicker, uniting along a very short irregular line. In the basal pole cellular spirals as wide as at the equator, with their tips slightly widened around the basal pore. Outer opening of the basal pore pentagonal, situated in the bottom of a low crateriform depression. Equatorial angle about 10° .

In longitudinal section, cellular spirals thick (about 100 μ m) composed of two calcification zones; the inner one somewhat darker, fibrous in texture. The outer zone three times thicker and fine-crystalline, with more or less distinctly marked lamination. In the apical part a very strong thinning of the spirals down to half of their thickness at the equator is visible. In the basal part ends of cellular spirals as thick as at equator, surrounding a short funnellike canal of the basal pore. Basal plug well developed, also composed of two calcification zones, thick, pyramidal, with the inner surface convex and the outer concave. Oospore membrane represented by black line along interior walls of spirals.

Remarks. — Mongolichara fulgida sp. n. is most similar to M. costulata KYANSEP-ROMA-SCHKINA (1975), the distinguishing characters of the species are convex cellular spirals, more acute equatorial angle and different thickness of the calcification zones in longitudinal section.

Occurrence. — Upper Cretaceous (Nemegt Formation), Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

Mongolichara grovesioides sp. n. (pl. 33: 4, 5, 7, 8)

Holotype: ZPAL Mg Char-III/48; pl. 33: 7. Type horizon: Upper Cretaceous, Nemegt Formation. Type locality: Nemegt, Nemegt Basin, Gobi Desert. Derivation of the name: grovesioides = displaying some similarity to Grovesichara.

Diagnosis. — Gyrogonites middle-sized, prolate spheroidal to subprolate and ellipsoidal with rounded summits and subtruncated bases. Cellular spirals convex with tendention to ornamentation. In the apical part cellular spirals slightly narrower and depressed forming a distinct peripheral groove and uniting in the apical centre along a short irregular line. Outer opening of the basal pore at the same level as the widened ends of surrounding spirals.

Material. — About 120 well preserved specimens.

ZPAL MgChar-III/	LPA in µm	LED in μm	ISI	AND in μm	ANI	Numb. conv.	Width conv. at EA in µm	Thick. conv. in μm
237	528	433	122	264	50	7	73	58
263	586	540	108	277	46	7	80	_
264	629	574	110	306	49	9	90	
265	646	547	118	306	47	7	98	_
48	650	546	119	320	49	8	95	-
266	680	557	120	340	50	8	107	-
267	680	640	196	317	46	8	93	-
268	697	590	118	323	47	9	90	
269	703	593	120	340	47	8	95	-
Range:	528-703	433-640	106-120	264-340	46-50	7-9	73-107	58

Measured gyrogonites of Mongolichara grovesioides sp. n.

Description. — Gyrogonites middle-sized, prolate spheroidal to subprolate (ISI 106—120) and ellipsoidal (ANI 46—50), with broadly rounded summits and subtruncated bases; length from 528 to 703 μ m, width from 433 to 640 μ m. Seven to nine convolutions visible in lateral view. Cellular spirals flat to convex, from 73 to 107 μ m wide, delimited by well developed intercellular sutures. A few gyrogonites possess regularly spaced low tubercles on the surface of the cellular spirals. In the apical part cellular spirals slightly narrower forming a low apical depression, and uniting along a short irregular line. At the basal pole cellular spirals as wide as at the equator. Outer opening of the basal pore at the same level as the widened ends of surrounding spirals. Equatorial angle less than 10°.

In longitudinal section cellular spirals thick, composed of two calcification zones; the inner one somewhat darker, not well preserved; the outer zone three times thicker, with more or less distinctly marked lamination. In the apical part cellular spirals twice thinner than at the equator. Basal plug unknown. Oospore membrane preserved imperfectly and only locally.

Remarks. — Mongolichara grovesioides sp. n. is most similar to M. fulgida sp. n. from which it differs in having subtruncated shape of the basal part, lacking the crateriform basal depression and displaying a tendention to surface ornamentation.

Occurrence. — Upper Cretaceous, (Nemegt Formation); Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

?Mongolichara immatura sp. n. (pl. 34:6, 8-10)

Holotype: ZPAL MgChar-III/161; pl. 34:10. Type horizon: Upper Cretaceous, Nemcgt Formation. Type locality: Nemegt, Nemegt Basin, Gobi Desert. Derivation of the name; Lat. immaturus = immature.

Diagnosis. — Gyrogonites small to middle-sized, subprolate to prolate and ellipsoidal with broadly rounded summits and subtruncate bases. Cellular spirals flat to convex. In the apical part cellular spirals narrower and thinning gradually to form an indistinct peripheral groove; in the apical centre cellular spirals sometimes slightly thicker, uniting along a short irregular line. Outer opening of the basal pore distinctly pentagonal, situated in the bottom of a crateriform depression.

Material. - About 100 well preserved specimens.

Description. — Gyrogonites small to middle-sized, subprolate to prolate (ISI 122–145) and predominantly ellipsoidal (ANI 42–53), with broadly rounded summits and subtruncate bases; length from 459 to 561 μ m, width from 354 to 445 μ m. Six to nine convolutions visible in lateral view. Cellular spirals smooth and flat to convex, from 47 to 76 μ m wide, delimited by more or less depressed intercellular sutures. In the apical part cellular spirals narrowing gradually to form a low peripheral groove, meeting each other along a short irregular line. At the basal pole cellular spirals slightly widened and somewhat extended around the basal pore. Outer opening of the basal pore distinctly pentagonal, situated in the bottom of a crateriform depression. Equatorial angle about 10°.

In longitudinal section, cellular spirals of an average thickness (42–60 μ m), composed of two indistinctly marked calcification zones; the inner one somewhat darker, fibrous in texture. The outer zone three times thicker, with more or less distinctly marked lamination. In the apical part cellular spirals thinning gradually, but only in the apical periphery slightly depressed or forming poorly marked peripheral groove. At the basal pole cellular spirals somewhat thinner than at the equator, surrounding short canal of the basal pore. Basal plug not well preserved, wider than thick, deeply inserted.

Remarks. — ?*Mongolichara immatura* sp. n. is most similar to *M. fulgida* from which it differs in having smaller dimensions and more elongated shape. Moreover, in ?*M. immatura* 9 — Palaeontologia Polonica No. 42

ZPAL MgChar-III/	LPA in µm	LED in µm	151	AND in μm	ANI	Numb. conv.	Width conv. at EA in µm	Thick. conv. in μm
270	459	354	130	229	50	9	47	_
161	460	374	123	220	48	8	66	_
229	480	390	123	225	47	7	66	42
230	495	370	134	225	44	6	72	60
271	510	365	140	255	50	8	74	-
273	510	404	127	212	42	8	59	-
228	522	414	126	280	53	8	66	50
274	540	374	145	246	45	9	76	_
272	547	445	122	272	50	8	71	_
275	561	394	142	250	44	7	64	-
Range:	459-561	354-445	122-145	212-280	42-53	69	47–76	4260

Measured gyrogonites of? Mongolichara immatura sp. n.

the cellular spirals are not so distinctly depressed in the apical part as it is the case in all other recorded species of *Mongolichara*. Only in some specimens an indistinct peripheral depression may be observed. For these reasons this species is only tentatively included in *Mongolichara*.

Occurrence. — Upper Cretaceous (Nemegt Formation); Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

Mongolichara turnaui sp. n. (pl. 33:1-3, 6, 9)

Holotype: ZPAL MgChar-III/130; pl. 33:2.

Type horizon: Upper Cretaceous, Nemegt Formation

Type locality: Nemegt, Nemegt Basin, Gobi Desert.

Derivation of the name: turnaui — in honour of Dr E. TURNAU (Institute of Geological Sciences, Polish Academy of Sciences, Cracow).

Diagnosis. — Gyrogonites middle-sized, subprolate to prolate and subovoidal to ellipsoidal with broadly rounded summits and protruding bases. Cellular spirals concave with secondary ridges somewhat higher than the intercellular ones. In the apical periphery cellular spirals narrow distinctly, forming a well delimited depression; in the apical centre they thicken slightly meeting each other along a very short irregular line. Basal plug thick. Outer opening of the basal pore situated in the bottom of a low, crater-like depression.

Material. — About 130 well preserved specimens.

Description. — Gyrogonites middle-sized, subprolate to prolate (1SI 120–139) and subovoidal to ellipsoidal (ANI 40–52), with broadly rounded summits and protruding bases; length from 612 to 748 μ m, with from 472 μ m to 612 μ m. Seven to nine convolutions visible in lateral view. Cellular spirals concave, from 78 to 110 μ m wide, delimited by low and thin intercellular ridges; secondary ridges well developed, wider and thicker than the intercellular ones. In the apical periphery cellular spirals narrower and depressed, somewhat thicker toward the summit, meeting each other in the apical centre along a very short irregular line. Basal part, as a rule, slightly prolonged but truncate in the basal centre. Outer opening of the basal pore pentagonal, situated in the bottom of a low crater-like depression formed by thickened ends of the surrounding spirals. Equatorial angle about 15°.

In longitudinal section, cellular spirals thick, composed of two calcification zones; the inner one somewhat darker, coarse-crystalline, the crystals closely packed, perpendicular to the oospore membrane. The outer zone fine-crystalline with poorly marked lamination. In the api-

ZPAL MgChar-III	LPA in µm	LED in μm	ISI	AND in μm	ANI	Numb. conv.	Width conv. at EA in µm	Thick. conv. in µm
247	612	472	130	306	50	8	88	_
248	663	544	120	316	47	7	98	_
249	680	510	133	270	40	8	88	-
250	680	533	127	289	42	10	78	_
251	688	544	126	362	52	8	95	-
252	705	510	139	290	41	9	88	-
225	708	555	128	348	49	8	83	83
253	709	574	123	340	48	7	110	_
130	720	540	133	330 .	46	8	90	-
254	748	612	122	374	50	8	102	-
Range:	612-748	470612	120-139	270374	40-52	7-10	78-110	83

Measured gyrogonites of Mongolichara turnaui sp. n.

cal part cellular spirals twice thinner than at the equator and formed only by the inner calcification zone. In the basal part the ends of cellular spirals slightly thinner, surrounding short and cylindrical canal of the basal pore. Basal plug also composed of the calcification zones, thick, pyramidal, with the inner surface flat and the outer concave. Fructificational wall visible in the specimens sectioned as a brownish, distinctly delimited zone.

Remarks. — Mongolichara turnaui sp. n. is most similar to Mongolichara costulata KYAN-SEP-ROMASCHKINA (1975) from which it differs in having more elongated shape, more protruding bases and somewhat larger dimensions.

Occurrence. — Upper Cretaceous (Nemegt Formation), Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

Genus Obtusochara Mädler, 1952

Type species: Obtusochara prima Mädler, 1952, Germany, Kimmerdgian.

Obtusochara cf. lanpingensis Z. WANG, HUANG and S. WANG, 1976 (pl. 23:3a-c)

Material. - One well preserved specimen.

Description. — Gyrogonite middle-sized (length — 566 μ m, width 360 μ m), prolate (ISI 157) and subovoidal (ANI 38), with flattened summit and somewhat protruding base. Eight convolutions visible in lateral view. Cellular spirals flat, wide (72 μ m), intercellular ridges lacking, intercellular sutures distinctly visible. In the apical periphery cellular spirals somewhat narrowing meeting each other along a very short irregular line. In the basal part cellular spirals slightly narrowing; outer opening of the basal pore at the same level as the protruding ends of surrounding spirals. Basal plug unknown. Equatorial angle about 25°.

Remarks. — Obtusochara cf. lanpingensis falls within the range of size variability of Obtusochara lanpingensis S. WANG et al., but it has cellular spirals narrowing slightly in the apical periphery, and more protruding basal part.

Occurrence. — Upper Cretaceous (Nemegt Formation), Nemegt, Nemegt Basin, Gobi Desert.

9*

Genus Peckichara GRAMBAST, 1957

Type species: Peckichara varians GRAMBAST, 1957, France, Eocene.

Peckichara praecursoria sp. n. (pl. 34:1-4, 7)

Holotype: ZPAL MgChar-III/42; pl. 34:1. Type horizon: Upper Cretaceous, Nemegt Formation. Type locality: Nemegt, Nemegt Basin, Gobi Desert. Derivation of the name: Lat. praecursorius = preceding.

Diagnosis. — Gyrogonites middle-sized, prolate spheroidal to subprolate and ellipsoidal with subtruncate summits and rounded bases. Cellular spirals thick with secondary ridges well developed. In the apical periphery, cellular spirals slightly narrower and thinner than at the equator, forming an interrupted peripheral groove. In the apical centre, cellular spirals with distinctly developed apical nodules. Basal pore situated in the bottom of a distinct pentagonal depression.

Material. — About thirty well preserved specimens.

Description. — Gyrogonites middle-sized, prolate spheroidal to subprolate (ISI 104— 123) and ellipsoidal (ANI 44—51), with rounded and subtruncated summits and broadly truncated bases; length from 619 to 680 μ m, width from 552 to 629 μ m. Six to eight convolutions visible in lateral view. Cellular spirals concave or flat, from 96 to 113 μ m, wide, with secondary

ZPAL MgChar-111/	LPA in µm	LED in μm	151	AND in μm	ANI	Numb. conv.	Width conv. at EA in µm	Thick conv. in μm
192	619	593	104	270	44	6	96	112
379	642	569	113	332	51	6	110	
380	646	600	107	300	46	6	112	
42	656	520	123	320	49	8	105	
381	680	595	114	300	44	7	113	
375	680	629	108	337	50	7	105	
376	680	552	123	306	45	7	102	
377	680	583	116	330	48	7	98	
378	680	560	121	297	49	6	102	
Range:	619-680	552-629	104-123	270-337	44-51	6-8	96-113	112

Measured gyrogonites of Peckichara praecursoria sp. n.

ridges well developed. Intercellular ridges low and narrow, with sutures poorly marked. In the apical periphery cellular spirals slightly narrower and thinner forming an interrupted peripheral groove. In the apical centre extended and the thickened spiral ends form more or less distinctly developed nodules. In the basal pole cellular spirals as wide as at the equator, with the tips slightly widened around the basal pore and ending roundedly. Basal depression distinct, regularly pentagonal and crateriform. Equatorial angle about 20°.

In longitudinal section, cellular spirals thick (about 110 μ m) with poorly marked two calcification zones; the inner one darker, thinner and fibrous in texture. The outer zone lighter in colour, finely laminated, three times thicker than the inner one. Secondary ridges wide and higher than the intercellular ridges. In the apical part two calcification zones also developed, but the outer one thinner than at the equator. Canal of the basal pore cylindrical, wider than

high. Basal plug not preserved. Oospore membrane represented by black line along the interior walls of spirals.

Remarks. — Peckichara praecursoria sp. n. is most similar to Peckichara dangyangensis Z. WANG, 1978, from which it differs in being larger, of more elongated shape and in having well developed secondary ridges.

Occurrence. — Upper Cretaceous (Nemegt Formation), Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

Genus Saportanella GRAMBAST, 1962

Type species: Saportanella maslovi GRAMBAST, 1962, France, Upper Cretaceous.

Saportanella nana KARCZ. and ZIEMB., 1970 (pl. 26:3, 6, 8, 10)

1970. Saportanella nana KARCZ. and ZIEMB.; J. KARCZEWSKA and M. ZIEMBIŃSKA-TWORZYDLO, 135, pl. 31: only 1-3; fig. 8.

Material. — About 1500 well preserved specimens.

ZPAL MgChar-111	LPA in µm	LED in µm	151	AND in μm	ANI	Numb. conv.	Width conv. at EA in µm	Thick. conv. in μm
405	275	272	101	130	47	7	39	
409	277	277	100	132	48	10	30	
408	306	285	107	132	43	7	39	
406	313	273	115	146	46	8	40	
407	314	314	100	147	46	8	41	
411	363	306	119	156	44	9	42	
410	369	340	109	199	54	9	42	
413	408	370	110	217	53	9	39	
412	431	387	112	195	59	8	59	
171	442	376	117	204	46	8	49	70
Range:	275-442	272-387	100-119	130-217	4354	7-10	39–59	70

Measured gyrogonites of Saportanella nana KARCZ. and ZIEMB.

Description. — Gyrogonites very small, predominantly prolate spheroidal (ISI 100– 119) and ellipsoidal (ANI 43–54), with broadly rounded to truncate summits and rounded bases; length from 275 to 442 μ m, width from 272 to 387 μ m. Seven to ten convolutions visible in lateral view. Cellular spirals slightly convex, separated by shallow intercellular furrows; cellular spirals in the apical periphery gradually narrowing and thinning, ending acutely or subacutely. In the apical centre the spirals absent, replaced by five opercular cells, placed in continuation of the surrounding spirals, forming a well developed rosette. Apical junction of cellular spirals forms an irregular line. Cellular spirals narrow gradually towards the basal region, in some specimens they are slightly widened around the basal pore; outer opening of the basal pore slightly lowered beneath the surfaces of the surrounding spirals. Equatorial angle about 10°.

In longitudinal section, cellular spirals very thick, much thicker than wide; the opercular cells are thinner than the equatorial part of the cellular spirals. Apical centres slightly depressed below the apical periphery. Basal plug unknown. Oospore preserved as a dark substance inside the gyrogonites.

Remarks. — We have excluded from the species S. nana all forms with concave cellular spirals. After an examination in longitudinal sections of the gyrogonites belonging to Saportanella, it appeared that there are significant differences between the forms with flat or convex cellular spirals and those with concave spirals to allow their inclusion in one species. The specimens in which the cellular spirals are concave have also flattened apical part. These are included in the new species S. romaschkinae together with the gyrogonites described earlier as S. nana KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO (1970, pl. 31: only 4a-c).

Occurrence. — Upper Cretaceous (Nemegt Formation), Nemegt and Altan IV, Nemegt Basin, Gobi Desert.

Saportanella romaschkinae sp. n. (pl. 39:1, 6, 7, 9, 10)

Holotype: ZPAL MgChar-III/100; pl. 39:10. Type horizon: Upper Cretaceous, Nemegt Formation. Type locality: Nemegt, Nemegt Basin, Gobi Desert. Derivation of the name: in honour of the Russian Charologist N. P. KYANSEP-ROMASCHKINA.

1970. Saportanella nana KARCZ. and ZIEMB. J. KARCZEWSKA and M. ZIEMBIŃSKA-TWORZYDŁO, 135, pl. 31: only 4a-c.

Diagnosis. — Gyrogonites small, prolate spheroidal to subprolate and ellipsoidal, with truncate summits and rounded bases. Apical centre slightly depressed below the apical periphery, opercular cells thinner than the equatorial cellular spirals. Cellular spirals strongly concave, delimited by sharp and more or less protruding intercellular ridges. Outer opening of the basal pore situated at the same level as the surfaces of surrounding spirals.

Material. - About 1000 well preserved specimens.

Description. — Gyrogonites small, prolate spheroidal to subprolate (ISI 100–117) and ellipsoidal (ANI 43–52), with truncate summits and rounded bases; length from 340 to 425 μ m, width from 306 to 419 μ m. Seven to nine convolutions visible in lateral view. Cellular spirals concave, delimited by sharp and more or less protruding intercellular ridges. In some specimens ornamentation in form of secondary ridges, generally identical in height and width with intercellular ridges. Intercellular sutures poorly visible on intercellular ridges. In the apical periphery cellular spirals gradually narrowing, then slightly widened around the apical rosette, ending truncately. Apical centres slightly depressed below the apical periphery, composed of five opercular cells of slightly irregular shape and variable size. Cellular spirals as a rule, continue onto the base without changing their size and shape, in some specimens slightly widened around the basal pore. Basal opening distinctly pentagonal. Outer opening of the basal pore small, situated at the same level as the surface of surrounding spirals. Equatorial angle less than 5°.

ZPAL MgChar-JII/	LPA in μm	LED in µm	151	AND in μm	ANI	Numb. conv.	Width conv. at EA in µm	Thick. conv. in μm
414	340	302	111	176	52	8	51	
416	357	324	110	154	43	7	45	
417	358	319	112	137	48	7	39	
418	365	360	101	170	46	8	59	
-100	385	385	100	190	49	8	50	
415	416	416	100	207	49	8	54	
420	419	419	100	197	47	9	51	
172	420	396	106	180	43	7	48	4060
421	420	404	104	187	44	8	56	
419	425	362	117	204	48	9	56	
Range:	340-425	306-419	100-117	137-207	43-52	7–9	39-59	40-60

Measured gyrogonites of Saportanella romaschkinae sp. n.

In longitudinal section, cellular spirals thick, more or less concave; the opercular cells thinner than the equatorial part of cellular spirals. Apical centre slightly depressed below the apical periphery. Canal of the basal pore approximately cylindrical, basal plug not preserved.

Remarks. — S. romaschkinae sp. n. is most similar to S. nana KARCZ. and ZIEMB. but it has concave cellular spirals, more flattened apical part and different structure of the cellular spirals in longitudinal section.

Occurrence. — Upper Cretaceous (Nemegt Formation), Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

Genus Sphaerochara MÄDLER, 1952 emend. HORN AF RANTZIEN and GRAMBAST, 1962

Type species: Sphaerochara hirmeri (RASKY, 1945) Mädler, 1952, Hungary, Upper Oligocene.

Sphaerochara jacobii sp. n. (pl. 35:1-3, 7)

Holotype: ZPAL MgChar-III/140; pl. 35: 3. Type horizon: Upper Cretaceous, Nemegt Formation. Type locality: Nemegt, Nemegt Basin. Gobi Desert. Derivation of the name: jacobii — Lat. Jacob = James from the name of the son the second author.

Diagnosis. — Gyrogonites very small, prolate spheroidal to subprolate and ellipsoidal, with broadly rounded and subtruncate summits and bases. Cellular spirals deeply concave, delimited by sharp intercellular ridges. Near the apex cellular spirals more or less constricted. Basal plug thick, closing a low and wide canal of the basal pore.

Material. — Thirty well preserved specimens.

Description. — Gyrogonites very small, prolate spheroidal to subprolate (ISI 103— 128) and ellipsoidal (ANI 43—52) with broadly rounded and subtruncate summits and bases; length from 295 to 357 μ m, width from 253 to 306 μ m. Nine to eleven convolutions visible

		0, 0		•		-		
ZPAL MgChar-III/	LPA in μm	LED in μm	ISI	AND in μm	ANI	Numb. conv.	Width conv. at EA in µm	Thick. conv. in μm
433	295	258	114	144	49	9	34	
140	300	253	118	130	43	10	40	
431	311	289	108	161	52	11	35	
434	312	272	111	148	49	11	34	
429	317	306	103	153	48	8	49	
185	328	289	113	147	45	9	40	32
435	340	272	126	166	49	9	37	
430	340	267	128	170	50	11	34	
432	357	283	125	187	52	_	-	
Range:	295-357	253-306	103-128	130–187	43-52	8-11	3449	32

Measured gyrogonites of Sphaerochara jacobii sp. n.

in lateral view. Cellular spirals deeply concave, without secondary ridges, 34 to 49 μ m wide. Intercellular ridges sharp, sutures invisible. In the apical periphery cellular spirals somewhat narrower than at the equator, of varying width (30-40 μ m). Apical junction forming a short

irregular line, occasionally punctiform. Basal part more or less broadly rounded but at the centre subtruncate; cellular spirals with slightly widened tips around the basal pore. Outer opening of the basal pore at the same level as the surfaces of surrounding spirals. Equatorial angle less than 5° .

In longitudinal section, cellular spirals approximately as thick as at the equator but somewhat narrower. Basal plug slightly wider than thick closing a low and wide canal of the basal pore.

Remarks. — Sphaerochara jacobii sp. n. is most similar to Sphaerochara granulifera (HEER) MÄDLER, 1955 described from the Upper Tertiary by HEER (1954) and MÄDLER, recorded also from the Upper Cretaceous deposits of China by WANG SHUI (1965), but it is much smaller.

Occurrence. — Upper Cretaceous (Nemegt Formation), Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

Genus Stephanochara GRAMBAST 1959

Type species: Stephanochara compta GRAMBAST, 1959, Great Britain, Oligocene.

Stephanochara castelii sp. n. (pl. 24:1, 3, 4, 8)

Holotype: ZPAL MgChar-III/133; pl. 24:1.

Type horizon: Upper Cretaceous, Nemegt Formation. Type locality: Nemegt, Nemegt Basin, Gobi Desert. Derivation of the name: castelii - in honour of the French charologist Dr M. FEIST-CASTEL.

Diagnosis. — Gyrogonites middle-sized to large, subprolate to prolate, ellipsoidal with rounded summits and slighty protruding bases. Cellular spirals thick, concave, with tendention to ornamentation. In the apical periphery cellular spirals distinctly thinner, forming a peripheral depression; widened in the apical centre they meet each other along an irregular line. Outer opening of the basal pore situated in the bottom of a distinctly crater-like depression formed by thickened ends of surrounding spirals.

Material. — Eighteen well preserved specimens.

ZPAL MgChar-III/	LPA in µm	LED in µm	ISI	AND in μm	ANI	Numb. conv.	Width conv. at EA in μm	Thick conv. in μm
231	674	470	144	300	44	8	85	92
389	680	556	122	336	49	8	95	
386	688	476	144	321	47	9	68	
387	710	564	126	340	48	9	85	
133	710	500	141	330	47	7	90	
388	714	544	131	340	47	7	108	
391	714	544	131	357	50	9	81	
393	748	547	134	348	47	8	93	
390	754	550	137	362	48	7	90	
392	826	476	173	377	46	8	88	
Range:	674-826	470-564	122-173	300377	44-50	7–9	68-108	92

Measured guraganites of Stenhanochara castelii sp. n

Description. — Gyrogonites middle-sized to large; subprolate to prolate (ISI 122–173) and ellipsoidal (ANI 44-50), with rounded summits and slighty protruding bases; length from 674 to 826 μ m, width from 470 to 564 μ m. Seven to nine convolutions visible in lateral view.

Cellular spirals predominantly concave, from 68 to 108 μ m wide, with secondary ridges low and narrow, with distinctly marked intercellular sutures. In some specimens cellular tubercles forming interrupted secondary ridges. Cellular spirals continue onto the summit without changing their width, depressed in the apical periphery to form a distinct peripheral groove. In the apical centre the ends of cellular spirals are extended and thickened, uniting along an irregular line. Basal pole subtruncate. Cellular spirals as wide as at the equator, their tips distinctly thickened and slightly widened around the basal pore, ending subtruncately. Outer opening of the basal pore situated in the bottom of a distinctly crater-like depression. Equatorial angle about 10°.

In longitudinal section, cellular spirals thick (about 90 μ m) with more or less distinctly marked lamination. In the apical part cellular spirals as wide as at the equator or slightly narrower. In the apical periphery cellular spirals two times thinner than at the equator; in the apical centre they are somewhat thicker. Basal plug unknown. Fructification wall locally and imperfectly preserved.

Remarks. — Stephanochara castelii sp. n. is most similar to Stephanochara ungeri FEIST-CASTEL, 1977, from which it differs in being somewhat smaller and having a lower number of convolutions, also in the presence of secondary ridges.

Occurrence. — Upper Cretaceous (Nemegt Formation), Nemegt and Altan Ula IV, Nemegt Basin, Gobi Desert.

REFERENCES

- FEIST-CASTEL, M. 1977. Etude floristique et biostratigraphique des Charophytes dans les séries du Paléogène de Provence. Géol. Méditerr., 4, 2, 109-138.
- -- and GRAMBAST. L. 1969. Charophytes de l'Éocène des Corbières. Bull. Soc. géol. France, ser. 7, 11, 936-943.
- GRADZIŃSKI, R. and JERZYKIEWICZ, T. 1972. Additional geographical and geological data from the Polish-Mongolian Palaeontological Expeditions. In: Z. KIELAN-JAWOROWSKA (ed.), Results Pol.-Mong. Pal. Exp. 1V. – Palaeont. Polonica, 27, 17-30.
 - -, KIELAN-JAWOROWSKA, Z. and MARYAŃSKA, T. 1977. Stratigraphy of the Upper Cretaceous Djadokhta, Barun Goyot and Nemegt Formations of Mongolia. Acta Geol. Polonica, 27, 3, 281-318.
- GRAMBAST, L. 1956. Sur la déhiscence de l'oospore chez Chara vulgaris L. et la systématique de certaines Characeae fossiles. — Rev. Gén. Bot., 63, 331-336.
 - 1957. Ornamentation de la gyrogonite et systématique chez les Charophytes fossiles. Ibidem., 64, 339-362.
 - 1959. Extension chronologique des genres chez les Charoideac. Soc. Edrt. Techn., 3-12.
 - 1959. Tendences évolutives dans le phylum des Charophytes. C. R. Acad. Sci., 249, 557-559.
 - 1961. Remarques sur la systématique et la répartition stratigraphique des Characeae pré-tertiaires. C. R. Somm. Séans. Soc. Géol. France, 7, 200-201.
 - 1962. Classification de l'embranchement des Charophytes. Nat. Montpel., sér. Bot., 14, 63-86.
 - 1967. La série évolutive Perimneste-Atopochara (Charophytes). C. R. Acad. Sci., 264, 581-584.
 - 1968. Evolution of the utricle in the Charophyte genera Perimneste HARRIS and Atopochora PECK. J. Linn. Soc. (Bot.), 61, 384, 5-11.
 - 1969. La symétrie de l'utricule chez les Clavatoracées et sa signification phylogénétique. C. R. Acad. Sci., 269, D, 878-881.
 - 1971. Remarques phylogénétiques et biochronologiques sur les Septorella du Crétacé Terminal de Provence et les Charophytes associées. — Paleobot. Continent. 2, 1-38.
 - 1974. Phylogeny of the Charophyta. Taxon, 23, 4, 463-481.

GROVES, J. 1916. On the name Lamprothamnus BRAUN. - J. Bot. 54, 336-337.

- HORN AF RANTZIEN, H. 1959. Morphological types and organ genera of Tertiary Charophyte fructifications. Stockholm Contr. Geol., 4, 2, 45-197.
 - --- and GRAMBAST, L. 1962. Some questions concerning recent and fossil Charophyte morphology and nomenclature. -- Ibidem, 9, 3, 135-144.
- KARCZEWSKA, J. and KYANSEP-ROMASCHKINA, N. P. 1979. Revision of Late Cretaceous genus Mongolichara Kyansep-Romaschkina. — Acta Palaeont. Polonica, 24, 4.
 - and ZIEMBIŃSKA-TWORZYDŁO, M. 1970. Upper Cretaceous Charophyta from the Nemegt Basin, Gobi Desert. In: Z. Kielan-Jaworowska (ed.), Results Pol.-Mong. Pal. Exp. 11. — Palaeont. Polonica, 21, 121-144.
- 1972. Lower Tertiary Charophyta from the Nemcgt Basin, Gobi Desert. In: ibidem, IV. Ibidem, 27, 51-81.
- KIELAN-JAWOROWSKA, Z. and BARSBOLD, R. 1972. Narrative of the Polish-Mongolian Palaeontological Expeditions 1967-1971. — In: ibidem, IV. — Ibidem, 27, 5-13.
- Куанsep-Romaschkina, N. P. (Кянсеп-Ромашкина, Н. П.) 1975. Некоторые позднеюрские и меловые харофиты Монголии. *In*: Крамаренко, Н. Н. (ред.) Ископаемая фауна и флора Монголии. — *Тр. совм. Сов.-Монг. палеонт. эксп.*, **2**, 181—204.

MÄDLER, K. 1952. Charophyten aus dem Nordwestdeutchen Kimmeridge. - Geol. Jb., 67, 1-46.

- 1955. Die taxonomische Prinzipien bei der Beurteilung fossiler Charophyten. Paläont. Ztschr., 29, 1/2, 103-108.
- PECK, R. E. 1937. Morrison Charophyta from Wyoming. -- J. Paleont., 11, 2, 83-89.
 - -- 1938. A new family of Charophyta from the Lower Cretaceous of Texas. Ibidem, 12, 2, 173-176.
 - --- 1941. Lower Cretaceous Rocky Mountain nonmarine microfossils. -- Ibidem, 15, 3, 285-304.
- 1957. North American Mesozoic Charophyta. U. S. Geol. Surv., Prof. Paper, 294-A, 1-44.
- RASKY, K. 1945. Fossile Charophyten-Früchte aus Ungarn. Ungar. Naturwiss. Mus., Naturwiss. Monogr., 2, 1-74.
- REID, C. and GROVES, J. 1921. The Charophyta of the Lower Headon Beds of Hordle (Hordwell) Cliffs (South Hampshire). — Quart. J. Geol. Soc., 77, 175–192.
- SCHAIKIN, I. М. (ШАЙКИН, И. М.) 1967. Ископаемые харовые водоросли из верхнеюрских отложений Днепровско-Донской впадины. — Ископ. водоросли СССР., 1, 268—287.
- Sochava, A. V. (Сочава, А. В.) 1975. Стратиграфия и литология верхне меловых отложений Монголии. *Тр. совм. Сов.-Монг. палеонт. эксп.* 13, 113-178.
- SZCZECHURA, J. 1979. Fresh-water ostracodes from the Nemegt Formation (Upper Cretaceous) of Mongolia. In:
 Z. Kielan-Jaworowska (ed.), Results Pol.-Mong. Pal. Exp. VIII. Palaeont. Polonica, 38, 65-121.
- WANG SHUI. 1965. Mesozoic and Tertiary Charophyta from Jiugnan Basin of Kansu Province. Acta Pal. Sinica, 13, 3, 485–499.
- -, HUANG REN-JIN, JAN CIUN-JIN, LIN HUA-NAN. 1978. Early Tertiary Charophytes from Coastal region of Bohai. 1-49.
- WANG ZHEN. 1978. Cretaceous Charophytes from the Yangtze-Han River Basin with a note on the classification of Porocharaceae and Characeae. — Mem. Nanjing Inst. Geol. Palacont. Acad. Sinica, 9, 5, 61-88.
 - -, HUANG REN-JIN and WANG SHUE. 1976. Mesozoik and Cenozoik Charophyta from Yunnan Province. Ibidem, 7, 12, 65-86.

EXPLANATION OF THE PLATES 22-39

All figures are scanning electron micrographs except for longitudinal sections.

All figured specimens are from the Upper Cretaceous, Nemegt Formation; Nemegt Basin, Gobi Desert, Mongolia.

PLATE 22

Amblyochara agathae sp. n. Nemegt locality

1. Gyrogonite (ZPAL MgChar-III/49), × 110; apical view

4. Gyrogonite (ZPAL MgChar-111/45), a — basal view, \times 75; b — outer opening of the basal pore, \times 450.

5. Gyrogonite (ZPAL MgChar-III/226), \times 75; longitudinal section.

8. Gyrogonite, holotype (ZPAL MgChar-III/47), \times 75; lateral view.

Gobichara caerulea sp. n. Nemegt locality

2. Gyrogonite (ZPAL MgChar-III/235), \times 75; longitudinal section.

3. Gyrogonite (ZPAL MgChar-III/76), \times 150; basal view.

6. Gyrogonite (ZPAL MgChar-III/75), \times 150; apical view.

7. Gyrogonite, holotype (ZPAL MgChar-III/29), × 75; lateral view.

PLATE 23

Mongolichara costulata KYANSEP-ROMASCHKINA, 1975 Nemegt locality

1. Gyrogonite (ZPal MgChar-III/4), a — basal view, \times 110; b — outer opening of the basal pore with the basal plug, \times 340.

2. Gyrogonite (ZPAL MgChar-III/67), \times 60; lateral view.

- 4. Gyrogonite (ZPAL MgChar-III/187), \times 75; longitudinal section.
- 5. Gyrogonite (ZPAL MgChar-III/64), × 110; apical view.
- 6. Gyrogonite (ZPAL MgChar-III/1), \times 90; apical view.

Obtusochara cf. lanpingensis Z. WANG, HUANG and S. WANG, 1976 Nemegt locality

3. Gyrogonite (ZPAL MgChar-III/94), \times 110; a — lateral view, b -- apical view, c -- basal view.

PLATE 24

Stephanochara castelii sp. n. Nemegt locality

1. Gyrogonite, holotype (ZPAL MgChar-III/133), × 75; lateral view.

3. Gyrogonite (ZPAL MgChar-III/127) × 110; basal view.

4. Gyrogonite (ZPAL MgChar-III/231), \times 75; longitudinal section.

8. Gyrogonite (ZPAL MgChar-III/126), × 110; apical view.

Mongolichara fulgida sp. n. Nemegt locality

2. Gyrogonite, holotype (ZPAL MgChar-III/150), \times 75; lateral view.

5. Gyrogonite (ZPAL MgChar-III/224), × 75; longitudinal section.

6. Gyrogonite (ZPAL MgChar-III/152), \times 110; apical view.

7. Gyrogonite (ZPAL MgChar-III/151), × 110, basal view.

PLATE 25

Atopochara ulanensis KYANSEP-ROMASCHKINA, 1975 Nemegt locality

1. Utricle (ZPAL MgChar-III/53), a — apical view, \times 75; b — basal view, \times 75; c — lateral view, \times 60.

Mesochara orientalis sp. n. Nemegt locality

2. Gyrogonite (ZPAL MgChar-III/84), × 90; basal view.

3. Gyrogonite, holotype (ZPAL MgChar-III/83), × 60; lateral view.

4. Gyrogonite (ZPAL MgChar-III/223), × 150; longitudinal section.

Harrisichara cepaeformis sp. n. 5, 6 — Nemegt locality 7 — Altan Ula IV locality

5. Gyrogonite (ZPAL MgChar-III/153), × 150; apical view.

6. Gyrogonite, holotype (ZPAL MgChar-III/74), \times 220; lateral view.

7. Gyrogonite (ZPAL MgChar-III/154), × 150, basal view.

PLATE 26

Mesochara orientalis sp. n. Nemegt locality

1. Gyrogonite (ZPAL MgChar-III/128), × 150; apical view.

Mesochara voluta (PECK, 1937) GRAMBAST, 1965 Nemegt locality

2. Gyrogonite (ZPAL MgChar-III/24), \times 160; lateral view.

5. Gyrogonite (ZPAL MgChar-III/203), × 150; longitudinal section.

Saportanella nana KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO, 1970 Nemegt locality

Gyrogonite (ZPAL MgChar-III/23), × 160; lateral view.
 Gyrogonite (ZPAL MgChar-III/171), × 75; longitudinal section.
 Gyrogonite (ZPAL MgChar-III/18), × 150; basal view.
 Gyrogonite (ZPAL MgChar-III/19), × 150; apical view.

Gobichara viridis sp. n. Nemegt locality

4. Gyrogonite (ZPAL MgChar-III/220), × 75; longitudinal section.

7. Gyrogonite, holotype (ZPAL MgChar-III/85), × 90; lateral view.

9. Gyrogonite (ZPAL MgChar-III/149), × 110; basal view.

11. Gyrogonite (ZPAL MgChar-III/148), × 150; apical view.

PLATE 27

Mesochara inflata sp. n. Nemegt locality

- 1. Gyrogonite, holotype (ZPAL MgChar-III/55), \times 150; lateral view.
- 2. Gyrogonite (ZPAL MgChar-III/212), × 150; a longitudinal section, b fragment of gyrogonite showing limespirals structure.

Mesochara gradzinskii sp. n. Altan Ula IV locality

- 3. Gyrogonite, holotype (ZPAL MgChar-III/108), × 250; lateral view.
- 4. Gyrogonite (ZPAL MgChar-III/131), \times 250; apical view.
- 5. Gyrogonite (ZPAL MgChar-III/215), \times 200; longitudinal section.
- 6. Gyrogonite (ZPAL MgChar-III/132), \times 250; basal view.

PLATE 28

Mesochara inflata sp. n. Nemegt locality

1. Gyrogonite (ZPAL MgChar-III/25), \times 250; basal view.

5. Gyrogonite (ZPAL MgChar-III/26), \times 250; apical view.

Mesochara mongolica KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO, 1970 Nemegt locality

- 2. Gyrogonite (ZPAL MgChar-III/216), \times 100; longitudinal section showing the basal pore.
- 3. Gyrogonite (ZPAL MgChar-III/217), \times 200; longitudinal section.
- 4. Gyrogonite (ZPAL MgChar-III/114), \times 200; lateral view.
- 6. Gyrogonite (ZPAL MgChar-III/115), × 200; basal view.
- 7. Gyrogonite (ZPAL MgChar-III/113), \times 200; apical view.

PLATE 29

Mesochara stankevitschii KYANSEP-ROMASCHKINA, 1975 Nemegt locality

- 1. Gyrogonite (ZPAL MgChar-III/12), \times 200; lateral view.
- 2. Gyrogonite (ZPAL MgChar-III/201), \times 200; longitudinal section with a lime-spirals structure in focus, b basal pore in median focal plane.
- 3. Gyrogonite (ZPAL MgChar-III/206), × 200; longitudinal section showing the basal plug.
- 6. Gyrogonite (ZPAL MgChar-III/141), × 300; apical part.
- 7. Gyrogonite (ZPAL MgChar-III/116), × 200; basal part.

Mesochara luculenta sp. n. Nemegt locality

- 4. Gyrogonite (ZPAL MgChar-III/199), × 100; longitudinal section.
- 5. Gyrogonite, holotype (ZPAL MgChar-III/33), \times 200; lateral view.

PLATE 30

Mesochara sp. Nemegt locality

- 1. Gyrogonite ZPAL MgChar-III/157, × 110; apical view.
- 2. Gyrogonite ZPAL MgChar-III/158, \times 110; basal view.

CHAROPHYTA FROM THE NEMEGT BASIN

Microchara cf. cristata GRAMBAST, 1971 Nemegt locality

Gyrogonite (ZPAL MgChar-III/166), × 110; lateral view.
 Gyrogonite (ZPAL MgChar-III/168); × 110; apical view.
 Gyrogonite (ZPAL MgChar-III/165), × 110; basal view.
 Gyrogonite (ZPAL MgChar-III/194), × 75; longitudinal section.

Mesochara obventicia sp. n. Nemegt locality

5. Gyrogonite (ZPAL MgChar-III/50), × 150; apical view.

6. Gyrogonite (ZPAL MgChar-III/56), × 150; basal view.

7. Gyrogonite (ZPAL MgChar-III/210), \times 150; longitudinal section.

10. Gyrogonite, holotype (ZPAL MgChar-III/51), × 150; lateral view.

Mesochara luculenta sp. n. Nemegt locality

8. Gyrogonite (ZPAL MgChar-III/52), × 150; basal view.

12. Gyrogonite (ZPAL MgChar-III/54), × 150; apical view.

PLATE 31

Atopochara ulanensis KYANSEP-ROMASCHKINA, 1975 Nemegt locality

1. Utricle (ZPAL MgChar-III/39), \times 75; a — lateral view, b — basal view, c — apical view.

2. Utricle well preserved (ZPAL MgChar-III/68), \times 50; a – lateral view, b – basal view, c – apical view.

3. Specimen without utricle (ZPAL MgChar-III/105), × 60; lateral view.

Mesochara sp. Nemegt locality

4. Gyrogonite (ZPAL MgChar-III/221), \times 75; longitudinal section.

5 Gyrogonite (ZPAL MgChar-III/155), \times 110; lateral view.

PLATE 32

Lamprothamnium altanulaensis (KARCZ. and ZIEMB., 1970) comb. n. Nemegt locality

1. Gyrogonite (ZPAL MgChar-III/6), a - lateral view, $\times 110$; b - basal part, $\times 450$.

2. Gyrogonite (ZPAL MgChar-III/60), \times 110; lateral view.

3. Gyrogonite (ZPAL MgChar-III/3), × 150; apical view.

4. Gyrogonite (ZPAL MgChar-III/180), \times 75; longitudinal section with preserved oosporangial membrane.

- 5. Gyrogonite (ZPAL MgChar-III/236), \times 75; longitudinal section with basal plug well visible.
- 6. Gyrogonite (ZPAL MgChar-III/182), \times 75; longitudinal section showing the apical structure.
- 7. Gyrogonite (ZPAL MgChar-III/15), × 150; basal view.
- 8. Gyrogonite (ZPAL MgChar-III/65), × 150; apical view.

PLATE 33

Mongolichara turnaui sp. n. Nemegt locality

- 1. Gyrogonite (ZPAL MgChar-III/17), × 110; apical view.
- 2. Gyrogonite, holotype (ZPAL MgChar-III/130), × 75; lateral view.
- 3. Gyrogonite (ZPAL MgChar-III/14), × 200; apical part.
- 6. Gyrogonite (ZPAL MgChar-III/225), × 75; longitudinal section.
- 9. Gyrogonite (ZPAL MgChar-III/10), × 200; basal part.

Mongolichara grovesioides sp. n. Nemegt locality

- 4. Gyrogonite (ZPAL MgChar-III/81), \times 80; apical view.
- 5. Gyrogonite (ZPAL MgChar-III/82), × 80; basal view.
- 7. Gyrogonite, holotype (ZPAL MgChar-III/48), × 75; lateral view.
- 8. Gyrogonite (ZPAL MgChar-III/237), × 75; longitudinal section.

PLATE 34

Peckichara praecursoria sp. n. Nemegt locality

- 1. Gyrogonite, holotype (ZPAL MgChar-III/42), × 100; lateral view.
- 2. Gyrogonite (ZPAL MgChar-III/13), \times 110; apical view.
- 3. Gyrogonite (ZPAL MgChar-III/28), \times 200; fragment of the apex. showing apical nodules.
- 4. Gyrogonite (ZPAL MgChar-III/192), \times 75; longitudinal section.
- 7. Gyrogonite (ZPAL MgChar-III/40), \times 70; basal view.

Latochara sp.

Nemegt locality

5. Gyrogonite (ZPAL MgChar-III/86), a — apical view, \times 150; b — lateral view, \times 110.

?Mongolichara immatura sp. n. Nemegt locality

- 6. Gyrogonite (ZPAL MgChar-III/228), × 75; longitudinal section.
- 8. Gyrogonite (ZPAL MgChar-III/160), \times 110; apical view.
- 9. Gyrogonite (ZPAL MgChar-III/159), × 110; basal view.
- 10. Gyrogonite, holotype (ZPAL MgChar-III/161), × 110; lateral view.

PLATE 35

Sphaerochara jacobii sp. n. Nemegt locality

1. Gyrogonite (ZPAL MgChar-III/162), × 225; apical view.

2. Gyrogonite (ZPAL MgChar-III/185), \times 150; longitudinal section.

3. Gyrogonite, holotype (ZPAL MgChar-III/140), \times 225; lateral view.

7. Gyrogonite (ZPAL MgChar-III/163), \times 225; basal view.

Mongolichara gobica (KARCZ. and ZIEMB., 1970), KYANSEP-Romaschkina, 1975 Nemegt locality

4. Gyrogonite (ZPAL MgChar-III/142), × 75; lateral view.

5. Gyrogonite (ZPAL MgChar-III/144), \times 110; basal view.

6. Gyrogonite (ZPAL MgChar-III/189), \times 75; longitudinal section.

PLATE 36

Harrisichara cretacea KARCZEWSKA and ZIEMBIŃSKA-TWORZYDŁO, 1970 Nemegt locality

- 1. Gyrogonite (ZPAL MgChar-III/78), × 200; apical view.
- Gyrogonite (ZPAL MgChar-III/66), a lateral view, × 120; b fragment of gyrogonite surface showing the secondary ridges structure, × 1000.
- 4. Gyrogonite (ZPAL MgChar-III/77), \times 200; basal view.
- 6. Gyrogonite (ZPAL MgChar-III/238), × 100; longitudinal section.

Mongolichara aurea (KARCZ. and ZIEMB., 1970) KYANSEP-ROMASCHKINA, 1975 Altan Ula IV locality

- 2. Gyrogonite (ZPAL MgChar-III/240), × 100; lateral view.
- 5. Gyrogonite (ZPAL MgChar-I/52), \times 100; longitudinal section.

PLATE 37

Maedlerisphaera pseudoulmensis KARCZ. and ZIEMB., 1970 1-6 Nemegt locality, 7 Altan Ula IV locality

- 1. Gyrogonite (ZPAL MgChar-III/2), \times 200; apical view.
- 2. Gyrogonite (ZPAL MgChar-III/147), \times 200; basal view.
- 3. Gyrogonite (ZPAL MgChar-III/196), \times 100; longitudinal section.
- 4. Gyrogonite (ZPAL MgChar-III/197), × 100; longitudinal section.
- 5. Gyrogonite (ZPAL MgChar-III/195), \times 100; longitudinal section.
- 6. Gyrogonite (ZPAL MgChar-III/124), × 150; lateral view.
- 7. Gyrogonite (ZPAL MgChar-III/121), × 200; apical part showing the peripheral groove.
- 10 Palaeontologia Polonica No. 42

PLATE 38

Euaclistochara mundula (PECK, 1941) Z. WANG, HUANG and S. WANG, 1976 Nemegt locality

- 1. Gyrogonite (ZPAL MgChar-III/44), × 200; apical view.
- 2. Gyrogonite (ZPAL MgChar-III/169), a longitudinal section, × 100; b longitudinal section showing the apical structure, × 200.
- 3. Gyrogonite (ZPAL MgChar-III/170), × 100; longitudinal section.
- 4. Gyrogonite (ZPAL MgChar-III/88), \times 400; apical view.
- 5. Gyrogonite (ZPAL MgChar-III/73), × 250; basal view.
- 6. Gyrogonite (ZPAL MgChar-III/46); × 200; lateral view.

PLATE 39

Saportanella romaschkinae sp. n. Nemegt locality

- 1. Gyrogonite (ZPAL MgChar-III/135), × 150; apical view.
- 6. Gyrogonite (ZPAL MgChar-III/172), \times 75; longitudinal section.
- 7. Gyrogonite (ZPAL MgChar-III/173), \times 75; longitudinal section.
- 9. Gyrogonite (ZPAL MgChar-III/20), × 150; basal view.
- 10. Gyrogonite, holotype (ZPAL MgChar-III/100), \times 150; lateral view.

Amblyochara nemegetensis sp. n. Nemegt locality

2. Gyrogonite (ZPAL MgChar-III/13), × 110; basal view.

- 3. Gyrogonite (ZPAL MgChar-III/137), × 250; basal view.
- 4. Gyrogonite, holotype (ZPAL MgChar-III/139), \times 110; lateral view.
- 5. Gyrogonite (ZPAL MgChar-III/233), × 75; longitudinal section.
- 8. Gyrogonite (ZPAL MgChar-III/138), × 110; apical view.

